K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2017

Ta có : \(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-.....-\frac{1}{1024}\)

\(=\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+.....+\frac{1}{1024}\right)\)

Đặt  \(A=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+.....+\frac{1}{1024}\)

=> \(2A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+.....+\frac{1}{512}\)

=> \(2A-A=\frac{1}{2}-\frac{1}{1024}\)

Thay A vào ta có : \(\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+.....+\frac{1}{1024}\right)\)

\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{1024}=\frac{1}{1024}\)

16 tháng 9 2017

Jenny123 tham khảo nhé

Đặt tổng trên là A, ta có:

\(A.2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)

\(A.2-A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{512}-"\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\)

\(\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}"\)

\(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)

\(-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-\frac{1}{32}-\frac{1}{64}-\frac{1}{128}-\frac{1}{256}-\frac{1}{512}-\frac{1}{1024}\)

\(A=1-\frac{1}{1024}=\frac{1023}{1024}\)

P/s: Bn xem lại đề nha

ta có\(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)

\(=\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)

tách

\(B=\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)

\(2B=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\)

\(2B-B=\frac{1}{2}-\frac{1}{1024}\)

thay vào B ta có 

\(\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)

\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{1024}=\frac{1}{1024}\)

17 tháng 7 2019

\(A=\frac{1}{2}-\frac{1}{4}-\cdot\cdot\cdot-\frac{1}{1024}\)

\(\Rightarrow A=\frac{1}{2}-\frac{1}{2^2}-\cdot\cdot\cdot-\frac{1}{2^{10}}\)

\(\Rightarrow2A=1-\frac{1}{2}-\cdot\cdot\cdot-\frac{1}{2^9}\)

\(\Rightarrow2A-A=\left(1-\frac{1}{2}-\cdot\cdot\cdot-\frac{1}{2^9}\right)-\left(\frac{1}{2}-\frac{1}{2^2}-\cdot\cdot\cdot-\frac{1}{2^{10}}\right)\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2^{10}}\)

\(\Rightarrow A=\frac{1}{2}+\frac{1}{2^{10}}\)

\(\Rightarrow A=\frac{2^9+1}{2^{10}}\)

\(\Rightarrow A=\frac{513}{1024}\)

16 tháng 9 2017

\(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-.............-\frac{1}{1024}\)

=> 2S = \(2x\left(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-..........-\frac{1}{1024}\right)\)

     2S = \(1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-..........-\frac{1}{512}\)

     2S - S = \(\left(1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-........-\frac{1}{512}\right)\)\(\left(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-........-\frac{1}{1024}\right)\)

=> S = \(1+\frac{1}{1024}=\frac{1024}{1024}+\frac{1}{1024}=\frac{1025}{1024}\)

Chắc chắn 100%

16 tháng 9 2017

nhanh lên hộ mình vs

20 tháng 10 2019

https://olm.vn/hoi-dap/tim-kiem?q=T%C3%ACm+x,+bi%E1%BA%BFt:+3x2.5++3x5.8++3x8.11++3x11.14+=121+&id=81551

Cậu vào link này nhé(đây là đáp án câu này)

15 tháng 3 2017

a)\(\frac{1}{99.97}\)\(\frac{1}{97.95}\)\(\frac{1}{95.93}\)−…−\(\frac{1}{5.3}\)\(\frac{1}{3.1}\)

=\(\frac{1}{99.97}\)−(\(\frac{1}{97.95}\)+\(\frac{1}{95.93}\)+…+\(\frac{1}{5.3}\)+\(\frac{1}{3.1}\))

=\(\frac{1}{99.97}\)\(\frac{1}{2}\).(\(\frac{1}{95}\)\(\frac{1}{97}\)+\(\frac{1}{93}\)\(\frac{1}{95}\)+…+\(\frac{1}{3}\)\(\frac{1}{5}\)+1−\(\frac{1}{3}\))

=\(\frac{1}{99.97}\)\(\frac{1}{2}\).(1−\(\frac{1}{97}\))
=\(\frac{1}{99.97}\)\(\frac{1}{2}\).\(\frac{96}{97}\)

=\(\frac{1}{99.97}\)\(\frac{48}{97}\)

=\(\frac{1}{99.97}\)\(\frac{48.99}{99.97}\)

=\(\frac{-4751}{9603}\)

31 tháng 12 2015

\(\frac{16}{45}\)

14 tháng 3 2017

\(\dfrac{1}{99.97}-\dfrac{1}{97.95}-\dfrac{1}{95.93}-...-\dfrac{1}{5.3}-\dfrac{1}{3.1}\)

=\(\dfrac{1}{99.97}-\)(\(\dfrac{1}{97.95}+\dfrac{1}{95.93}+...+\dfrac{1}{5.3}+\dfrac{1}{3.1}\))

=\(\dfrac{1}{99.97}-\)\(\dfrac{1}{2}\left(\dfrac{1}{95}-\dfrac{1}{97}+\dfrac{1}{93}-\dfrac{1}{95}+\dfrac{1}{3}-\dfrac{1}{5}+1-\dfrac{1}{3}\right)\)

=\(\dfrac{1}{99.97}-\dfrac{1}{2}\left(1-\dfrac{1}{97}\right)\)

=\(\dfrac{1}{99.97}-\dfrac{1}{2}.\dfrac{96}{97}\)

=\(\dfrac{1}{99.97}-\dfrac{48}{97}\)

=\(\dfrac{1}{99.97}-\dfrac{48.99}{99.97}\)

=\(\dfrac{-4751}{9603}\)

19 tháng 3 2017

Đáp án là: -49/99

\(\frac{16}{45}\)

19 tháng 2 2019

\(\frac{16}{45}\)

\(\Rightarrow x=\frac{16}{45}\)