K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 4 2018

Lời giải:

Ta có: \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2009.2011}\)

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{2009.2011}\)

\(2A=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+....+\frac{2011-2009}{2009.2011}\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-....+\frac{1}{2009}-\frac{1}{2011}\)

\(2A=1-\frac{1}{2011}=\frac{2010}{2011}\Rightarrow A=\frac{1005}{2011}\)

24 tháng 4 2017

Giải:

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2009.2011}.\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2009}-\dfrac{1}{2011}\right).\)

\(=\dfrac{1}{2}\left[\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+...+\left(\dfrac{1}{2009}-\dfrac{1}{2009}\right)+\left(1-\dfrac{1}{2011}\right)\right].\)

\(=\dfrac{1}{2}\left[0+0+0+...+\left(1-\dfrac{1}{2011}\right)\right].\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{2011}\right).\)

\(=\dfrac{1}{2}.\dfrac{2010}{2011}=\dfrac{2010}{4022}=\dfrac{1005}{2011}.\)

~ Học tốt nha bn!!! ~

Bài mik đúng thì nhớ tick mik nha!!!

24 tháng 4 2017

1\1-1\3+1\3-1\5+1\5-1\7+...+ 1\2009- 1\2011

=1- 1\2011

=2010\2011

dấu \ là 1 trên vui

6 tháng 5 2017

\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2009.2011}\)

\(A=\dfrac{1}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2009.2011}\right)\)

\(A=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2009}-\dfrac{1}{2011}\right)\)

\(A=\dfrac{1}{2}.\left(1-\dfrac{1}{2011}\right)\)

\(A=\dfrac{1}{2}.\dfrac{2010}{2011}\)

\(A=\dfrac{1005}{2011}\)

6 tháng 5 2017

\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{2009.2011}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2009.2011}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2009}-\dfrac{1}{2011}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{2011}\right)\)

\(=\dfrac{1}{2}.\dfrac{2010}{2011}\)

\(=\dfrac{1005}{2011}\)

Vậy \(A=\dfrac{1005}{2011}\)

19 tháng 6 2017

\(\left(1+\dfrac{1}{1.3}\right).\left(1+\dfrac{1}{2.4}\right).\left(1+\dfrac{1}{3.5}\right)......\left(1+\dfrac{1}{2009.2011}\right)\)

\(=\dfrac{4}{1.3}.\dfrac{9}{2.4}.\dfrac{16}{3.5}........\dfrac{4040100}{2009.2011}\)

\(=\dfrac{2.2.3.3.4.4.....................2010.2010}{1.3.2.4.3.5.................2008.2010.2009.2011}\)

\(=\dfrac{2.2010}{2011}\)

không biết đúng k nhưng cứ lm thôi

10 tháng 5 2018

\(B=\dfrac{1}{1.3}\dfrac{1}{3.5}+\dfrac{1}{5.7}+.....+\dfrac{1}{2003.2005}\\ =\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2003.2005}\right)\\ =\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-...+\dfrac{1}{2003}-\dfrac{1}{2005}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{2005}\right)\\ =\dfrac{1}{2}.\dfrac{2004}{2005}\\ =\dfrac{1002}{2005}\)

10 tháng 5 2018

Hình như bn vt sai đề phải ko???

lolang

6 tháng 5 2018

A=2.(1/1.3 + 1/3.5 + 1/5.7 +.......+1/99.101)

=2.(1/1 + 1/3 + 1/5 + 1/5 + 1/7 +...+1/99 + 1/101)

=2.(1-1/101)

=2.(101/101-1/101)

=2.100/101

200/101

6 tháng 5 2018

B=2.(1/1.3+1/3.5+1/3.1+....+1/99.101)

=2.(1/1+1/3+1/3+1/5+1/3+1/7+....+1/99+1/101)

=2.(1/1+1/101)

=2.(101/101+1/101)

=2.102/101

=204/101

7 tháng 8 2018

Đặt \(U=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2003.2005}\)

\(\Rightarrow U=\dfrac{1.2}{1.2.3}+\dfrac{1.2}{3.2.5}+\dfrac{1.2}{5.2.7}+...+\dfrac{1.2}{2003.2.2005}\)

\(\Rightarrow U=\dfrac{1}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2003.2005}\right)\)

\(\Rightarrow U=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2003}-\dfrac{1}{2005}\right)\)

\(\Rightarrow U=\dfrac{1}{2}.\left(1-\dfrac{1}{2005}\right)\Rightarrow U=\dfrac{1}{2}.\dfrac{2004}{2005}\Rightarrow U=\dfrac{1002}{2005}\)

28 tháng 2 2019

cảm ơn

30 tháng 6 2017

\(A=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...\dfrac{1}{99}-\dfrac{1}{101}\right)-\dfrac{1}{101}\)

\(A=\dfrac{1}{2}.\left(1-\dfrac{1}{101}\right)-\dfrac{1}{101}\)

\(A=\dfrac{1}{2}.\left(\dfrac{100}{101}\right)-\dfrac{1}{101}\)

\(A=\dfrac{50}{101}-\dfrac{1}{101}=\dfrac{49}{101}\)

30 tháng 6 2017

\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{99.101}-\dfrac{1}{101}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}\right)-\dfrac{1}{101}\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)-\dfrac{1}{101}\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{101}\right)-\dfrac{1}{101}\)

\(=\dfrac{1}{2}.\dfrac{100}{101}-\dfrac{1}{101}=\dfrac{50}{101}-\dfrac{1}{101}=\dfrac{49}{101}\)

Vậy...

24 tháng 4 2017

cho minh xin yeu cau de bai

26 tháng 4 2017

trả hiểu yêu cầu đề bài là j cả

24 tháng 5 2017

\(M=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{995.997}+\dfrac{1}{997.999}\)

\(2M=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{995.997}+\dfrac{2}{997.999}\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{997}-\dfrac{1}{999}\)

\(=1-\dfrac{1}{999}=\dfrac{998}{999}\)

\(\Rightarrow M=\dfrac{998}{999}.\dfrac{1}{2}=\dfrac{499}{999}\)

\(M=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{995.997}+\dfrac{1}{997.999}\\ =\dfrac{1}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{995.997}+\dfrac{2}{997.999}\right)\\ =\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{997}-\dfrac{1}{999}\right)\\ =\dfrac{1}{2}.\left(1-\dfrac{1}{999}\right)=\dfrac{1}{2}.\dfrac{998}{999}=\dfrac{499}{999}\)