Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(M=\dfrac{631}{315}\cdot\dfrac{1}{651}-\dfrac{1}{105}\cdot\dfrac{2603}{651}-\dfrac{4}{315\cdot651}+\dfrac{4}{105}\)
\(=\dfrac{1}{315\cdot651}\cdot\left(631-4\right)-\dfrac{1}{105}\left(\dfrac{2603}{651}-4\right)\)
\(=\dfrac{1}{105}\cdot\dfrac{1}{1953}\cdot627+\dfrac{1}{105\cdot651}\)
\(=\dfrac{1}{105\cdot651}\left(\dfrac{1}{3}\cdot627+1\right)=\dfrac{1}{105\cdot651}\cdot210=\dfrac{2}{651}\)
b: \(N=\dfrac{1095}{547}\cdot\dfrac{3}{211}-\dfrac{546}{547\cdot211}-\dfrac{4}{547\cdot211}\)
\(=\dfrac{1}{547\cdot211}\left(1095\cdot3-546-4\right)\)
\(=\dfrac{1}{547\cdot211}\cdot2735=\dfrac{5}{211}\)
a: \(=\dfrac{\left(2\cdot547+1\right)\cdot3}{547\cdot211}-\dfrac{546}{547\cdot211}-\dfrac{4}{547\cdot211}\)
\(=\dfrac{2735}{547\cdot211}=\dfrac{5}{211}\)
b: x=7 nên x+1=8
\(x^{15}-8x^{14}+8x^{13}-8x^{12}+...-8x^2+8x-5\)
\(=x^{15}-x^{14}\left(x+1\right)+x^{13}\left(x+1\right)-x^{12}\left(x+1\right)+...-x^2\left(x+1\right)+x\left(x+1\right)-5\)
\(=x^{15}-x^{15}-x^{14}+x^{14}-...-x^3-x^2+x^2+x-5\)
=x-5=7-5=2
a)Nhận xét
\(\dfrac{n^3+1}{n^3-1}=\dfrac{\left(n+1\right)\left(n^2-n+1\right)}{\left(n-1\right)\left(n^2+n+1\right)}=\dfrac{\left(n+1\right)\left[\left(n-0,5\right)^2+0;75\right]}{\left(n-1\right)\left[\left(n+0,5\right)^2+0,75\right]}\)
Áp dụng công thức trên:
\(A=\dfrac{2^3+1}{2^3-1}.\dfrac{3^3+1}{3^3-1}....\dfrac{9^3+1}{9^3-1}\)
\(=\dfrac{\left(2+1\right)\left[\left(2-0,5\right)^2+0,75\right]}{\left(2-1\right)\left[\left(2+0,5\right)^2+0,75\right]}.\dfrac{\left(3+1\right)\left[\left(3-0,5\right)^2+0,75\right]}{\left(3-1\right)\left[\left(3+0,5\right)^2+0,75\right]}...\dfrac{\left(9+1\right)\left[\left(9-0,5\right)^2+0,75\right]}{\left(9-1\right)\left[\left(9+0,5\right)^2+0,75\right]}\)
\(=\dfrac{3\left(1,5^2+0,75\right)}{\left(2,5^2+0,75\right)}.\dfrac{4\left(2,5^2+0,75\right)}{2\left(3,5^2+0,75\right)}...\dfrac{10\left(8,5^2+0,75\right)}{8\left(9,5^2+0,75\right)}\)
\(=\dfrac{3.4....10}{1.2.....8}.\dfrac{1,5^2+0,75}{9,5^2+0,75}\)
\(=\dfrac{9.10}{2}.\dfrac{3}{91}\)
\(=\dfrac{3}{2}.\dfrac{90}{91}< \dfrac{3}{2}\)
\(\Rightarrowđpcm\)
b) Làm tương tự
\(\dfrac{1.2}{1.1}.\dfrac{2.3}{2.2}.\dfrac{3.4}{3.3}.\dfrac{4.5}{4.4}...\dfrac{10.11}{10.10}\left(x-2\right)=-20x+40\)
\(\Leftrightarrow\dfrac{2.3.4...11}{1.2.3...10}\left(x-2\right)=-20x+40\)
\(\Leftrightarrow11\left(x-2\right)=-20x+40\)
\(\Leftrightarrow11x-22=-20x+40\)
\(\Leftrightarrow31x=62\)
\(\Rightarrow x=2\)
\(=>\dfrac{2\cdot1}{1\cdot1}\cdot\dfrac{2\cdot3}{2\cdot2}\cdot\dfrac{3\cdot4}{3\cdot3}\cdot......\cdot\dfrac{10\cdot11}{10\cdot10}\cdot\left(x-2\right)=-20\left(x+1\right)+60\)=>11*(x-2)=-20*(x+1)+60
=>11x-22=-20x-20+60
=>31x=62
=>x=2
\(=\dfrac{\dfrac{2^3\cdot3^2}{3^3\cdot4^2}\cdot\left(-1\right)}{\dfrac{2^2\cdot\left(-5\right)^3}{5^2\cdot2^6\cdot3^3}}=\dfrac{-\dfrac{1}{2}\cdot\dfrac{1}{3}}{-\dfrac{1}{2^4}\cdot5\cdot\dfrac{1}{3^3}}=\dfrac{1}{6}:\dfrac{5}{2^4\cdot3^3}\)
\(=\dfrac{1}{6}\cdot\dfrac{2^4\cdot3^3}{5}=\dfrac{2^3\cdot3^2}{5}=\dfrac{72}{5}\)
A = (x - 1) (x2 - 2x + 1) + 4x(x + 1)(x - 1) - 3(1 - x)(x2 + x + 1)
= (x - 1) (x2 - 2x + 1) + 4x(x + 1)(x - 1) + 3(x - 1)(x2 + x + 1)
= (x - 1) [x2 - 2x + 1 + 3(x2 + x + 1) + 4x(x + 1)]
= (x - 1) (x2 - 2x + 1 +3x2 + 3x + 3 + 4x2 + 4x)
= (x - 1) (8x2 + 5x + 4)
Vậy A = (x - 1) (8x2 + 5x + 4)
\(2\dfrac{1}{547}.\dfrac{3}{211}-\dfrac{546}{547}.\dfrac{1}{211}-\dfrac{4}{547.211}\)
\(=\left(2+\dfrac{1}{547}\right).3.\dfrac{1}{211}-\left(1-\dfrac{1}{547}\right).\dfrac{1}{211}-4.\dfrac{1}{547}.\dfrac{1}{211}\)
Đặt \(a=\dfrac{1}{547};b=\dfrac{1}{211}\)
Thay \(a=\dfrac{1}{547};b=\dfrac{1}{211}\) vào biểu thức trên , ta được :
\(\left(2+a\right).3b-\left(1-a\right)b-4ab\)
\(=6b+3ab-b+ab-4ab\)
\(=5b\)
\(=5.\dfrac{1}{211}\)
\(=\dfrac{5}{211}\)
Vậy g/t biểu thức trên là : \(\dfrac{5}{211}\)