K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2017
tui ko biet
24 tháng 2 2017

22 + 42 + 62 + ....... + 1002

= ( 1.2 )2 + ( 2.2 )2 + ( 3.2 )2 + ..... + ( 2.50 )2

= 12.22 + 22.22 + 32.22 + ...... + 22.502

= 22.(12 + 22 + 32 + ..... + 502)

= 4.\(\frac{50\left(50+1\right)\left(2.50+1\right)}{6}\)

= 44.257550

= 1030200

24 tháng 2 2017

ở đây công thức là      n x ( n + 1 ) x (2 x n +1)   /  6 

 áp dụng trong bài này ta có : 

100 x ( 100 + 1) ( 2 x 100 + 1 )   /     6  

=  100 x 101 x 201  /   6

=  338350

                                               

A=-1++(-1)+..+-(1) có 50 số -1

=>A=-1x50=-50

B=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)

B=0+0+0+..+0

B=0

C=2^100-(2^99+2^98+...+1)

C=2^100-(2^100-1)

C=1

27 tháng 9 2020

A = 2100- 299 + 298 - 297 + ... + 22 - 2

=> 2A =  2101 - 2100 + 299 - 298 + ... + 23 - 22 

Khi đó 2A  + A = (2101 - 2100 + 299 - 298 + ... + 23 - 22) + (2100- 299 + 298 - 297 + ... + 22 - 2)

=> 3A = 2101 - 2

=> \(A=\frac{2^{201}-2}{3}\)

b) Ta có B = 3100- 399 + 398 - 397 + ... + 32 - 3 + 1

=> 3B = 3101 - 3100 + 399 - 398  + ... + 33 - 32 + 3

Khi đó 3B + B = (3101 - 3100 + 399 - 398  + ... + 33 - 32 + 3) + (3100- 399 + 398 - 397 + ... + 32 - 3 + 1)

=> 4B = 3101 + 1

=> B = \(\frac{3^{101}+1}{4}\)

27 tháng 9 2020

a) \(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

=> \(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

=> \(2A+A=\left(2^{101}-2^{100}+...-2^2\right)+\left(2^{100}-2^{99}+...-2\right)\)

<=> \(3A=2^{101}-2\)

=> \(A=\frac{2^{101}-2}{3}\)

b) \(B=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\)

=> \(3A=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2+3\)

=> \(3A+A=\left(3^{101}-3^{100}+...+3\right)+\left(3^{100}-3^{99}+...+1\right)\)

<=> \(4A=3^{101}+1\)

=> \(A=\frac{3^{101}+1}{4}\)

Câu 2 tham khảo tại

Câu hỏi của Hang Le - Toán lớp 7 | Học trực tuyến

Học tốt!!!!

8 tháng 8 2019

tên mày như cái lông lồn ý, đổi tên đi con

14 tháng 1 2017

Bài 1:

\(A=1^3+2^3+...+99^3+100^3\)

\(=\left(1+2+...+100\right)^2\)

\(=\left[\frac{100\cdot\left(100+1\right)}{2}\right]^2\)

\(=5050^2=25502500\)

20 tháng 2 2017

A= 13 + 23 + 33 + ... + 1003

= 1 + 2 + 1.2.3 + 2.3.4 + ... + 100 + 99.100.101

= ( 1 + 2 + 3 + ... + 100) + ( 1.2.3 + 2.3.4 + ... + 99.100.101 )

= 5050 + 101989800

= 101994850