K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

a.\(\dfrac{\sqrt{2}}{\sqrt{18}}=\sqrt{\dfrac{2}{18}}=\sqrt{\dfrac{1}{9}}=\dfrac{1}{3}\)

b.\(\dfrac{\sqrt{15}}{\sqrt{735}}=\sqrt{\dfrac{15}{735}}=\sqrt{\dfrac{1}{49}}=\dfrac{1}{7}\)

c.\(\dfrac{\sqrt{12500}}{\sqrt{500}}=\sqrt{\dfrac{12500}{500}}=\sqrt{25}=5\)

d.\(\dfrac{\sqrt{6^5}}{\sqrt{2^3.33^5}}=\sqrt{\dfrac{2^5.3^5}{2^3.3^5}}=\sqrt{2^2}=2\)

21 tháng 6 2017

a) \(\dfrac{\sqrt{2}}{\sqrt{18}}=\dfrac{1}{3}\)

b) \(\dfrac{\sqrt{15}}{\sqrt{735}}=\dfrac{1}{7}\)

c) \(\dfrac{\sqrt{12500}}{\sqrt{500}}=\dfrac{50\sqrt{5}}{10\sqrt{5}}=\dfrac{50}{10}=5\)

d) \(\dfrac{\sqrt{6^5}}{\sqrt{2^33^5}}=\dfrac{36\sqrt{6}}{18\sqrt{6}}=\dfrac{36}{18}=2\)

21 tháng 6 2017

Hai câu đầu dùng máy tính hả :)

21 tháng 9 2018

Mysterious Person giúp e với! Em cảm ơn!!!

a: \(=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}=4\sqrt{5}\)

b: \(=2\sqrt{5}-2-2\sqrt{5}=-2\)

c: \(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)

d: \(=\dfrac{2\left(2\sqrt{2}-\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{3}-2\sqrt{2}\right)}-\dfrac{1}{\sqrt{6}}\)

\(=\dfrac{-3}{\sqrt{6}}=-\dfrac{3\sqrt{6}}{6}=-\dfrac{\sqrt{6}}{2}\)

e: \(=\dfrac{8}{3}\sqrt{3}-\dfrac{1}{3}\sqrt{3}-\dfrac{4}{5}\sqrt{3}=\dfrac{23}{15}\sqrt{3}\)

19 tháng 4 2021

a, \(\frac{\sqrt{2}}{\sqrt{18}}=\sqrt{\frac{2}{18}}=\sqrt{\frac{1}{9}}=\frac{1}{3}\)

b, \(\frac{\sqrt{15}}{\sqrt{735}}=\sqrt{\frac{15}{735}}=\sqrt{\frac{1}{49}}=\frac{1}{7}\)

c, \(\frac{\sqrt{12500}}{\sqrt{500}}=\sqrt{\frac{12500}{500}}=\sqrt{\frac{125}{5}}=\sqrt{25}=5\)

d, \(\frac{\sqrt{6^5}}{\sqrt{2^3.3^5}}=\sqrt{\frac{6^5}{2^3.3^5}}=\sqrt{\frac{2^5.3^5}{2^3.3^5}}=\sqrt{2^2}=2\)

13 tháng 5 2021

a) căn 2 / căn 18 = 1/3

b) căn 15/ căn 735 = 1/7

c) căn 12500 / căn 500 = 5

d) căn 6^5 / 2^3 * 3^5 = 2

a: \(=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{2}\sqrt{2}\right)\cdot5\sqrt{6}\)

\(=\left(2\sqrt{6}-4\sqrt{3}+\dfrac{9}{2}\sqrt{2}\right)\cdot5\sqrt{6}\)

\(=60-20\sqrt{18}+\dfrac{45}{2}\sqrt{12}\)

\(=60-60\sqrt{2}+45\sqrt{3}\)

b: \(=\dfrac{\sqrt{5}+\sqrt{2}+\sqrt{5}-\sqrt{2}+3}{3}\cdot\dfrac{1}{3+2\sqrt{2}}\)

\(=\dfrac{2\sqrt{5}+3}{3}\cdot\dfrac{1}{3+2\sqrt{2}}=\dfrac{2\sqrt{5}+3}{9+6\sqrt{2}}\)

 

14 tháng 11 2018

Đề không khó, mỗi tội dài

14 tháng 11 2018

vậy thì bn làm hộ mik vs , mik cần gấp

5 tháng 8 2018

a) \(\dfrac{\sqrt{2}}{\sqrt{3}}+2.\dfrac{\sqrt{3}}{\sqrt{2}}-\sqrt{6}=\dfrac{\sqrt{2}}{\sqrt{3}}+\dfrac{\sqrt{2}.\sqrt{2}.\sqrt{3}}{\sqrt{2}}-\sqrt{6}=\dfrac{\sqrt{2}}{\sqrt{3}}+\sqrt{6}-\sqrt{6}=\dfrac{\sqrt{2}}{\sqrt{3}}\)

b)

\(3\dfrac{\sqrt{2}}{\sqrt{5}}+\dfrac{\sqrt{5}}{\sqrt{2}}-2\sqrt{10}=3\dfrac{\sqrt{2}.\sqrt{5}}{5}+\dfrac{\sqrt{5}.\sqrt{2}}{2}-2\sqrt{10}\)\(=\sqrt{10}.\left[\dfrac{3}{5}+\dfrac{1}{2}-2\right]=\sqrt{10}.\left(-\dfrac{9}{10}\right)=\dfrac{-9\sqrt{10}}{10}\)

c)

\(\dfrac{-\sqrt{3}}{\sqrt{5}}+3.\dfrac{\sqrt{5}}{\sqrt{3}}-4\sqrt{15}=\dfrac{-\sqrt{15}}{5}+3.\dfrac{\sqrt{15}}{3}-4\sqrt{15}=\sqrt{15}.\left(\dfrac{-1}{5}+1-4\right)=\sqrt{15}.\left(-\dfrac{16}{5}\right)=\dfrac{-16\sqrt{15}}{5}\)

d)\(\dfrac{2\left(\sqrt{6}+2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}+\dfrac{2\left(\sqrt{6}-2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}+\dfrac{5\sqrt{6}}{6}\)

\(=\dfrac{2\left[\left(\sqrt{6}+2\right)+\left(\sqrt{6}-2\right)\right]}{6-4}+\dfrac{5\sqrt{6}}{6}=\left(2\sqrt{6}\right)+\dfrac{5\sqrt{6}}{6}=\dfrac{17\sqrt{6}}{6}\)

Kiểm tra lại nhé ^^

1. Áp dụng quy tắc khai phương một thương, hãy tính: a, \(\sqrt{\dfrac{36}{121}}\) b, \(\sqrt{\dfrac{9}{16}:\dfrac{25}{36}}\) c, \(\sqrt{0,0169}\) d,\(\dfrac{\sqrt{15}}{\sqrt{735}}\) e, \(\sqrt{\dfrac{81}{8}:\sqrt{3\dfrac{1}{8}}}\) g, \(\dfrac{\sqrt{12,5}}{\sqrt{0,5}}\) 2. Tính: a,\(\sqrt{\dfrac{25}{144}}\) b,\(\sqrt{2\dfrac{7}{81}}\) ...
Đọc tiếp

1. Áp dụng quy tắc khai phương một thương, hãy tính:

a, \(\sqrt{\dfrac{36}{121}}\) b, \(\sqrt{\dfrac{9}{16}:\dfrac{25}{36}}\) c, \(\sqrt{0,0169}\)

d,\(\dfrac{\sqrt{15}}{\sqrt{735}}\) e, \(\sqrt{\dfrac{81}{8}:\sqrt{3\dfrac{1}{8}}}\) g, \(\dfrac{\sqrt{12,5}}{\sqrt{0,5}}\)

2. Tính:

a,\(\sqrt{\dfrac{25}{144}}\) b,\(\sqrt{2\dfrac{7}{81}}\) c,\(\sqrt{\dfrac{2,25}{16}}\) d, \(\sqrt{\dfrac{1,21}{0,49}}\)

3. Áp dụng quy tắc chia hai căn bậc hai, hãy tính:

a, \(\sqrt{18}:\sqrt{2}\) b, \(\sqrt{45}:\sqrt{80}\)

c, (\(\sqrt{20}-\sqrt{45}+\sqrt{5}\) ) : \(\sqrt{5}\) d, \(\dfrac{\sqrt{8^2}}{\sqrt{4^5.2^3}}\)

4. Khẳng định nào sau đây là đúng?

A. \(\sqrt{\dfrac{3}{\left(-5\right)^2}}=-\dfrac{\sqrt{3}}{5}\) B. \(\left(\sqrt{\dfrac{-3}{-5}}\right)^2=\dfrac{3}{5}\)

5. Tính.

a, \(\sqrt{2\dfrac{7}{81}}:\dfrac{\sqrt{6}}{\sqrt{150}}\) b, \(\left(\sqrt{12}+\sqrt{27}-\sqrt{3}\right):\sqrt{3}\)

c, \(\left(\sqrt{\dfrac{1}{5}-\sqrt{\dfrac{9}{5}}+\sqrt{5}}\right):\sqrt{5}\) d, \(\sqrt{\dfrac{2+\sqrt{3}}{\sqrt{2}}}\)

6. So sánh

a, So sánh \(\sqrt{144-49}\)\(\sqrt{144}-\sqrt{49}\);

b, Chứng minh rằng , với hai số a,b thỏa mãn a> b> 0 thì \(\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)

3
13 tháng 11 2018

1

a,\(\sqrt{\dfrac{36}{121}}=\sqrt{\dfrac{6^2}{11^2}}=\dfrac{6}{11}\)

\(\sqrt{\dfrac{9}{16}:\dfrac{25}{36}}=\sqrt{\dfrac{81}{100}}=\sqrt{\dfrac{9^2}{10^2}}=\dfrac{9}{10}\)

13 tháng 11 2018

tương tự lm nốthehe

23 tháng 6 2017

(bài 1) a) \(\dfrac{1}{5+2\sqrt{6}}-\dfrac{1}{5-2\sqrt{6}}\) = \(\dfrac{5-2\sqrt{6}-5-2\sqrt{6}}{25-24}\)

= \(\dfrac{-4\sqrt{6}}{1}\) = \(-4\sqrt{6}\)

b) \(\sqrt{6+2\sqrt{5}}-\dfrac{\sqrt{15}-\sqrt{3}}{\sqrt{3}}\) = \(\sqrt{\left(\sqrt{5}+1\right)^2}-\dfrac{\sqrt{3}\left(\sqrt{5}-1\right)}{\sqrt{3}}\)

= \(\left(\sqrt{5}+1\right)-\left(\sqrt{5}-1\right)\) = \(\sqrt{5}+1-\sqrt{5}+1\) = \(2\)

c) \(\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}:\dfrac{1}{\sqrt{16}}\) = \(\dfrac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}:\dfrac{1}{\sqrt{16}}\)

= \(\sqrt{6}.\sqrt{16}\) = \(4\sqrt{6}\)

d) \(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{1+\sqrt{2}}-\dfrac{1}{2-\sqrt{3}}\)

= \(\dfrac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{1+\sqrt{2}}-\dfrac{1}{2-\sqrt{3}}\)

= \(\sqrt{3}+2+\sqrt{2}-\dfrac{1}{2-\sqrt{3}}\) = \(\dfrac{\left(\sqrt{3}+2+\sqrt{2}\right)\left(2-\sqrt{3}\right)-1}{2-\sqrt{3}}\)

= \(\dfrac{2\sqrt{3}-3+4-2\sqrt{3}+2\sqrt{2}-\sqrt{6}-1}{2-\sqrt{3}}\)

= \(\dfrac{2\sqrt{2}-\sqrt{6}}{2-\sqrt{3}}\) = \(\dfrac{\sqrt{2}\left(2-\sqrt{3}\right)}{2-\sqrt{2}}\) = \(\sqrt{2}\)

e) \(\dfrac{4}{1+\sqrt{3}}-\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}\) = \(\dfrac{4}{1+\sqrt{3}}-\dfrac{\sqrt{3}\left(\sqrt{5}+1\right)}{1+\sqrt{5}}\)

= \(\dfrac{4}{1+\sqrt{3}}-\sqrt{3}\) = \(\dfrac{4-\sqrt{3}-3}{1+\sqrt{3}}\) = \(\dfrac{1-\sqrt{3}}{1+\sqrt{3}}\)

= \(\dfrac{\left(1-\sqrt{3}\right)\left(1-\sqrt{3}\right)}{1-3}\) = \(\dfrac{1-2\sqrt{3}+3}{-2}\) = \(\dfrac{4-2\sqrt{3}}{-2}\)

= \(\dfrac{-2\left(-2+\sqrt{3}\right)}{-2}\) = \(\sqrt{3}-2\)

23 tháng 6 2017

bài 2)

a)\(\dfrac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\dfrac{1}{\sqrt{a}+\sqrt{b}}=\dfrac{\left(a+b-2\sqrt{ab}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\)

= \(\dfrac{a\sqrt{a}+a\sqrt{b}+b\sqrt{a}+b\sqrt{b}-2a\sqrt{b}-2b\sqrt{a}}{\sqrt{a}-\sqrt{b}}\)

= \(\dfrac{a\sqrt{a}+-a\sqrt{b}+b\sqrt{b}-b\sqrt{a}}{\sqrt{a}-\sqrt{b}}\) = \(\dfrac{a\left(\sqrt{a}-\sqrt{b}\right)-b\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\)

= \(\dfrac{\left(a-b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\) = \(a-b\)

b) \(\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right).\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)

= \(\dfrac{2a-2}{4\sqrt{a}}.\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)^2-\sqrt{a}\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

= \(\dfrac{2a-2}{4\sqrt{a}}.\dfrac{\sqrt{a}\left(a-2\sqrt{a}+1\right)-\sqrt{a}\left(a+2\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

= \(\dfrac{2a-2}{4\sqrt{a}}.\dfrac{a\sqrt{a}-2a+\sqrt{a}-a\sqrt{a}-2a-\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

= \(\dfrac{2\left(a-1\right)}{4\sqrt{a}}.\dfrac{-4a}{a-1}\) = \(-2\)