Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2014}{2015}.\frac{2015}{2016}\)
A=\(\frac{1.2.3.4...2015}{2.3.4...2016}=\frac{1}{2016}\)
Hok tốt
A = \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2015}\right).\left(1-\frac{1}{2016}\right)\)
= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2014}{2015}.\frac{2015}{2016}\)
= \(\frac{1}{2016}\)
Vậy ...
\(2B=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}\)
\(B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}+\frac{1}{2^{2018}}\)
\(\Rightarrow B=2B-B=2-\frac{1}{2^{2018}}\)
S = (-2)+3+(-4)+5+........+(-100)+101+(-102)
Tổng trên có: (102-2):1+1 = 101
Mà 101 lẻ nên để lại số 102 còn 100 số hạng
Gộp 2 số: (-2) và 3; (-4) và 5.......(-100)+101
S = (-2)+3+(-4)+5+.........+(-100)+101+(-102)
S = [(-2)+3] +[(-4)+5]+.......+[(-100)+101] + (-102)
S = 1+1+1+..........+1+(-102)
Ta có: 1.50 = 50 + (-102) = -52
Tick nha!
Ta có:
2^n -1-2-2^2-2^3- ......... - 2^100 = 1
=> 2^n= 1+1+2+2^2+2^3+ ........ + 2^100.
=> 2 x 2^n= 2+2+4+2^3+2^4+ ....... + 2^101
=> 2^n = 2 x 2^n - 2^n= (2+2+4+2^3+2^4+......+2^101) - (1+1+2+2^2+2^3+ ....... + 2^100) =(2 + 2^101) - ( 1+1)= 2 + 2^101 - 2 = 2^101.
=> n= 101.
a) \(\left(x-1\right)=\left(x-1\right)^3\)
\(\Leftrightarrow\left(x-1\right)^3-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\left(x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{2;0\right\}\end{cases}}\)
Vậy \(x\in\left\{0;1;2\right\}\)
b) \(x^3+x=0\)
\(\Leftrightarrow x\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=-1\left(L\right)\end{cases}}\)
Vậy x = 0
=> N=\(\frac{\left(3^{101}-1\right)}{2}\)