K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2023

\(A=2017:\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2017.2018}\right)\)
\(=2017:\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2017}-\dfrac{1}{2018}\right)\)
\(=2017:\left(1-\dfrac{1}{2018}\right)\)
\(=2017:\dfrac{2017}{2018}\)
\(=2017\cdot\dfrac{2018}{2017}\)
\(=2018\)
#NgDat

4 tháng 5 2023

\(A=2017:\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2017\cdot2018}\right)\)

\(A=2017:\left(\dfrac{1}{1}\cdot\dfrac{1}{2}+\dfrac{1}{2}\cdot\dfrac{1}{3}+\dfrac{1}{3}\cdot\dfrac{1}{4}+...+\dfrac{1}{2017}\cdot\dfrac{1}{2018}\right)\)

\(A=2017:\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2017}-\dfrac{1}{2018}\right)\)

\(A=2017:\left(\dfrac{1}{1}-\dfrac{1}{2018}\right)\)

\(A=2017:\left(\dfrac{2018}{2018}-\dfrac{1}{2018}\right)\)

\(A=2017:\dfrac{2017}{2018}\)

\(A=2018.\)

21 tháng 2 2023

Trước tiên, chúng ta cần có lý thuyết về biến đổi phân số.

\(\dfrac{b-a}{a\cdot b}=\dfrac{1}{a}-\dfrac{1}{b}\)

Ta có:

\(S=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2017\cdot2018}\)

\(S=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2017}-\dfrac{1}{2018}\)

\(S=1+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+...-\dfrac{1}{2018}\)

\(S=1-\dfrac{1}{2018}\)

\(S=\dfrac{2017}{2018}\)

21 tháng 2 2023

=1/1.2+1/2.3+1/3.4+...1/2017.2018

=1/1-1/2+1/2-1/3+1/3-1/4+...+1/2017-1/2018

=1-1/2018

=2018/2018-1/2018

=2017/2018

25 tháng 2 2020

\(C=\left(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{2017\cdot2018}\right)-\)\(\left(\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2017}\right)\)

Đặt \(A=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{2017\cdot2018}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(\Rightarrow A=\left(1+\frac{1}{3}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}+\frac{1}{2018}\right)-2\cdot\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}+\frac{1}{2018}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2009}\right)\)

\(\Rightarrow A=\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+..+\frac{1}{2017}\)

\(\Rightarrow C=\left(\frac{1}{101}+\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2018}\right)-\left(\frac{1}{1010}+\frac{1}{1012}+...+\frac{1}{2017}\right)\)

\(\Rightarrow C=\frac{1}{2018}\)

31 tháng 12 2017

\(\frac{1}{1.2}\)\(+\frac{1}{2.3}+\)\(\frac{1}{3.4}\)\(+\)\(.............+\)\(\frac{1}{2017.2018}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{2017}-\frac{1}{2018}\)

\(=\frac{1}{1}-\frac{1}{2018}\)

\(=\frac{2017}{2018}\)

31 tháng 12 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{2017.2018}\)

 \(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+......+\frac{2018-2017}{2017.2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2017}-\frac{1}{2018}\)

\(=1-\frac{1}{2018}\)

\(=\frac{2017}{2018}\)

9 tháng 4 2020

Đặt S = ( 1/1.2 + 1/3.4 + 1/5.6 + ... + 1/2017.2018 )

Đặt A = ( 1/1.2 + 1/3.4  + ... + 1/2017.2018)

= 1 - 1/2 + 1/3 - 1/4  + ... + 1/2017  - 1/2018

= ( 1 + 1/3 + ... + 1/2017 ) - ( 1/2 + 1/4 + ... + 1/2018 )

= ( 1 + 1/2 + ... + 1/2018 ) - 2 ( 1/2 + 1/4 + ... + 1/2018) )

= ( 1 + 1/2 + ... + 1/2018 ) - ( 1 + 1/2 + ... + 1/1009 )

= 1/1010 + 1/1011 + ... + 1/2018

=> A - ( 1/1010 + 1/1011 + ... + 1/2017 ) = 1/2018

=> S = 1/2018

Vậy S = 1/2018

9 tháng 4 2020

thanks bạn nhiều

26 tháng 12 2015

Ta có : 

S=1.2+2.3+3.4+.............+n(n+1)  

=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1)  

=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n)  

Ta có các công thức:  

1^2 + 2^2 + 3^2 +...+ n^2

= n(n+1)(2n+1)/6  1 + 2 + 3 + ...+ n

= n(n+1)/2  

Thay vào ta có:  

S = n(n+1)(2n+1)/6 + n(n+1)/2  

=n(n+1)/2[(2n+1)/3 + 1]  

=n(n+1)(n+2)/3

****

26 tháng 12 2015

3A = 1.2.3 + 2.3.3+......+n(n+1).3

= 1.2.3+2.3.(4-1)+.....+n(n+1)(n+2-n-1)

= 1.2.3 + 2.3.4-1.2.3+....+n(n+1)(n+2) - n(n+1)(n-1)

= n(n+1)(n+2)

=> A=  n(n+1)(n+2) / 3 

7 tháng 8 2018

a) \(A=\frac{1}{5}-\frac{1}{5^2}+\frac{1}{5^3}-\frac{1}{5^4}+...+\frac{1}{5^{99}}-\frac{1}{5^{100}}\)

\(\Rightarrow5A=1-\frac{1}{5}+\frac{1}{5^2}-\frac{1}{5^3}+...+\frac{1}{5^{98}}-\frac{1}{5^{99}}\)

\(\Rightarrow5A+A=1-\frac{1}{5^{100}}\)

\(A=\frac{1-\frac{1}{5^{100}}}{6}\)

b) B = 1.2+2.3+3.4+...+2017.2018

=>3B=1.2.3 + 2.3.3+3.4.3+...+2017.2018.3

3B = 1.2.3 + 2.3.(4-1) +3.4.(5-2) +...+2017.2018.(2019-2016)

3B = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+2017.2018.2019-2016.2017.2018

3B = 2017.2018.2019

\(B=\frac{2017.2018.2019}{3}\)

7 tháng 8 2018

3B = 1.2.3 + 2.3.3 + 3.4.3 + ... + 2017.2018.3

3B = 1.2.3 + 2.3.(4-1) + 3.4.(5-2)+...+ 2017.2018(2019-2016)

3B = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 2017.2018.2019 - 2016.2017.2018

3B = 2017.2018.2019

B = 2017.2018.2019/3 

B= 2739315938

\(A=\frac{1}{2}+\frac{1}{2.3}+..+\frac{1}{2017.2018}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(A=1-\frac{1}{2018}\)

\(A=\frac{2018}{2018}-\frac{1}{2018}\)

\(A=\frac{2017}{2018}\)

hok tốt!!

13 tháng 9 2016

Lời giải :

Đặt S=1.2+2.3+3.4+4.5+…+99.100+100.101

3S=1.2.3+2.3.3+3.4.3+4.5.3+…+99.100.3+100.101.3

=1.2(3−0)+2.3(4−1)+3.4(5−2)+4.5(6−3)+…+99.100(101−98)+100.101(102−99)

=0.1.2-1.2.3+1.2.3-2.3.4+...+99.100.101-100.101.102

=100.101.102

S=100.101.34=343400

12 tháng 10 2022

1.Tính 

a) Ta có: 

  A=(1-1/22).(1-1/32)...(1-1/1002)

=>A=3/22.8/32.....9999/1002

=>A=(1.3/2.2).(2.4/3.3).....(99.101/100.100)

=>A=(1.2.3.....99/2.3.4.....100).(3.4.5.....101/2.3.4.....100)

=>A=1/100.101/2

=>A=101/200

b) Ta có: 

  B=-1/1.2-1/2.3-1/3.4-...-1/100.101

=>B=-(1/1.2+1/2.3+1/3.4+...+1/100.101)

=>B=-(1-1/2+1/2-1/3+1/3-1/4+...+1/100-1/101)

=>B=-(1-1/101)

=>B=-100/101

 c) Ta có:

 C=1.2+2.3+3.4+...+100.101

       =>3C=1.2.3+2.3.3+3.4.3+...+100.101.3

       =>3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+100.101.(102-99)

       =>3C=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+...+100.101.102

       =>3C=100.101.102

       =>3C=1030200

       =>C=343400

Chúc bạn hok tốt nhé >:)!!!!!