K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2018

từ 101 đến 200 có 100 số
ta có 1/101 +1/102 +...+1/200 >1/200 +1/200 +....+1/200 (100số)
=> A>100/200 =1/2 (1)
A <1/101 +1/101 +....+1/101 (100)số
=> A<1 (2)
Từ (1) và(2) ta có 1/2<A<1

dựa theo trên mà làm nhé mk cố hết sức rồi

3 tháng 5 2017

sakura ???

3 tháng 5 2017

De sai o dau phai hok ban. Phien ban xem lai giup.Toi mik giai cho

7 tháng 3 2021

chịu tôi trả lời rùi đó

9 tháng 3 2018

a) Ta có: \(\frac{2010}{2009}=1+\frac{1}{2009}\)(1)

            \(\frac{2011}{2010}=1+\frac{1}{2010}\)(2)

Từ (1) và (2)

    Mà: \(\frac{1}{2009}>\frac{1}{2010}\)

       \(\Rightarrow\frac{2010}{2009}>\frac{2011}{2010}\)

b) Ta có: 100 số hạng của dãy đều bé hơn 1/100

\(\Rightarrow\)\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}< \frac{1}{100}\cdot100\)

Hay \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}< 1\)

18 tháng 6 2017

1/ Ta có : tất cả các p/s ở tổng A đều có tử bằng 1 . Mà MS 101 < 102 ; 103 ; ... ; < 200 .

   Nên 1/101 là p/s lớn nhất ( lớn hơn 1/102 ; 1/103 ; ... ; 1/200 )

2/ Tổng A có phân số là : ( 200 - 101 ) : 1 + 1 = 100 (phân số ) .

Nếu thay cả 100 p/s bằng p/s lớn nhất : 1/101 thì tổng A = 1/101 . 100 = 100/101 < 1 .

=> 1/101 + 1/102 + 1/103 + ... + 1/200 ( 100p/s ) < 1/101 + 1/101 + 1/101 + ... + 1/101 (100 p/s ) < 1 .

Vậy : A < 1

16 tháng 3 2022
Đúng rồi
6 tháng 4 2017

Ta có :

\(\frac{1}{101}>\frac{1}{200}\)

\(\frac{1}{102}>\frac{1}{200}\)

\(\frac{1}{103}>\frac{1}{200}\)

\(.........\)

\(\frac{1}{200}=\frac{1}{200}\)

Cộng vế với vế ta được :

\(\frac{1}{101}+\frac{1}{102}+.....+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+....+\frac{1}{200}\) (có 100 số hạng \(\frac{1}{200}\))\(=\frac{100}{200}=\frac{1}{2}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{200}>\frac{1}{2}\)

14 tháng 2 2016

j mà  nhìu zu zậy làm bao giờ mới xong

14 tháng 2 2016

Ủng hộ mk đi các bạn
 

27 tháng 7 2018

a )   Số lượng số của dãy số trên là : 

\(\left(200-101\right):1+1=100\) ( số ) 

Do \(100⋮2\)nên ta nhóm dãy số trên thành 2 nhóm như sau : 

\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)\)

\(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};...;\frac{1}{149}>\frac{1}{150};\frac{1}{150}=\frac{1}{150}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}>\frac{1}{150}.50=\frac{1}{3}\left(1\right)\)

\(\frac{1}{151}>\frac{1}{200};\frac{1}{152}>\frac{1}{200};...;\frac{1}{199}>\frac{1}{200};\frac{1}{200}=\frac{1}{200}\)

\(\Rightarrow\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}>\frac{1}{200}.50=\frac{1}{4}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{3}+\frac{1}{4}=\frac{7}{2}\left(3\right)\)

\(\frac{1}{101}< \frac{1}{100};\frac{1}{102}< \frac{1}{100};...;\frac{1}{199}< \frac{1}{100};\frac{1}{200}< \frac{1}{100}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}< \frac{1}{100}.100=1\left(4\right)\)

Từ \(\left(3\right);\left(4\right)\Rightarrowđpcm\)

b )  Số lượng số dãy số trên là : 

\(\left(150-101\right):1+1=50\)( số ) 

Ta có : \(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};\frac{1}{103}>\frac{1}{150};...;\frac{1}{150}=\frac{1}{150}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}>\frac{1}{150}.50=\frac{1}{3}\)

\(\Rightarrowđpcm\)

18 tháng 6 2017

Chưa hiểu lắm đề câu 1 :v thôi làm tạm câu 2 nhé (sửa lại đề câu 1 đi -_-)

Ta có : $\dfrac{1}{101}<\dfrac{1}{100};\dfrac{1}{102}<\dfrac{1}{100};...;\dfrac{1}{200}<\dfrac{1}{100}$

Vì A có 100 phân số : $(200-101):1+1=100$

$=>A<\dfrac{1}{100}.100=1$

18 tháng 6 2017

1/ \(\dfrac{1}{101}>\dfrac{1}{102};...;\dfrac{1}{101}>\dfrac{1}{200}\)

2/ Ta có: \(\left\{{}\begin{matrix}\dfrac{1}{101}< \dfrac{1}{100}\\...\\\dfrac{1}{200}< \dfrac{1}{100}\end{matrix}\right.\Rightarrow A=\dfrac{1}{101}+...+\dfrac{1}{200}< \dfrac{1}{100}+...+\dfrac{1}{100}\)

( 100 phân số \(\dfrac{1}{100}\) )

\(\Rightarrow A< \dfrac{1}{100}.100=1\)

\(\Rightarrowđpcm\)