Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 + 2 + 3 + 4 + ... + 2108
= (2108 + 1).2018 : 2
= 2019.1009
= 2037171
1 + 4 + 7 + ... + 100
số số hạng là :
(100 - 1) : 3 + 1 = 34
tổng :
1 + 4 + 7 + ... + 100
= (100 + 1).34 : 2
= 101.17
= 1717
đặt A = 1 + 2 + 4 + 8 + 16 + ... + 512
A = 1 + 2 + 22 + 23 + 24 + ... + 29
2A = 2 + 22 + 23 + ... + 210
2A - A = (2 + 22 + 23 + ... + 210) - (1 + 2 + 22 + ... + 29)
A = 210 - 1
1 + 2 + 3 + 4 + 2017 + 2018
2S = 2019 + 2019 + 2019 + ... + 2019(có số hạng)
S = 2019 x 2018 : 2
S = 2037881
1 + 4 + 7 + ...+ 100
2S= 101 + 101 +...+101(có 34 số hạng)
S= 101 x 34 : 2 = 1717
minh cho cong thuc ban tu giai nha
[(so dau + so cuoi) x so so hang ]/2
a)A=1/20+1/30+1/42+1/56+1/72+1/90+1/110
= 1/4*5 + 1/5*6 + 1/6*7 + ... + 1/10*11
= 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/10 - 1/11
= 1/4 - 1/11
= 7/44
b)B=1/2+1/4+1/6+1/8+...+1/512+1/1024
B = 1/2^1 + 1/2^2 + 1/2^3 + ... + 1/2^9 + 1/2^10
2B = 1 + 1/2 + 1/2^2 + ... + 1/2^10 + 1/2^11
2B - B = B = 1 + 1/2^11
#)Giải :
\(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+...+\frac{1}{256}-\frac{1}{512}\)
\(=\frac{1}{2}-\frac{1}{512}\)
\(=\frac{255}{512}\)
Lời giải
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+...+\frac{1}{256}-\frac{1}{512}\)
\(=\frac{1}{2}-\frac{1}{512}\)
\(=\frac{255}{512}\)
Ta có : \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)
Đặ A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)(1)
=> 2A = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\)(2)
Lấy (2) trừ (1) theo vế ta có :
2A - A = \(\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\right)\)
=> A = \(1-\frac{1}{2^{10}}=\frac{2^{10}-1}{2^{20}}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{10}}\)
\(\Leftrightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^9}\)
\(\Rightarrow2A-A=1-\frac{1}{2^{10}}=\frac{1023}{1024}\)
A=\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{512}-\frac{1}{1024}\)
=1-1/1024
=1023/1024
\(A=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+....+\frac{1}{256}-\frac{1}{512}\)
\(=\frac{1}{2}-\frac{1}{512}\)
\(=\frac{255}{512}\)
Vậy \(A=\frac{255}{512}\)
A=14 +18 +116 +132 +164 +1128 +1256 +1512
=12 −14 +14 −18 +....+1256 −1512
=12 −1512
=255512
Vậy A=255512
Phạm Long Khánh