Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = \(\frac{6}{1.3}+\frac{6}{3.5}+...+\frac{6}{97.99}=3.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)\)
=\(3.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)=3.\left(1-\frac{1}{99}\right)=3.\frac{98}{99}=\frac{98}{33}\)
\(B=\frac{6}{1.3}+\frac{6}{3.5}+...+\frac{6}{97.99}\)
\(=3\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)\)
\(=3\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=3\left(1-\frac{1}{99}\right)\)
\(=\frac{98}{33}\)
Ta có \(6B=1\times3\times6+3\times5\times6+...+97\times99\times6\)
\(=1\times3\times\left(5+1\right)+3\times5\times\left(7-1\right)+5\times7\times\left(9-3\right)+...+97\times99\times\left(101-95\right)\)
\(=1\times3\times5+1.3+3\times5\times7-3\times5\times1+...-97\times99\times95\)
\(=97\times99\times101+3\)
\(\Rightarrow B=\frac{97\times99\times101+3}{6}=161651\)
B=1x3+3x5+5x7+7x9+...+95x97+97x99
= 1.(1+2)+3.(3+2)+5.(5+2)+....+95.(95+2)+97.(97+2)
= 12+1.2+32+3.2 +52+5.2+...+952+95.2+ 972+97.2
= (12+32 +52+...+952+ 972)+(1.2+3.2 +5.2+...+95.2+97.2)
= (12+32 +52+...+952+ 972)+ 2.(1+3 +5+...+95+97)
Đặt : A = 12+32 +52+...+952+ 972
C =1+3 +5+...+95+97
tính A và C (tìm câu hỏi tương tự hình như anh thấy họ làm rồi đấy) sau đó thay vào tính B
Ta có :
\(A=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+...+\frac{1}{97.99}+\frac{1}{98.100}\)
\(A=\frac{1}{2}.\left(1-\frac{1}{3}\right)+\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}\right)+\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{4}-\frac{1}{6}\right)+...+\frac{1}{2}.\left(\frac{1}{97}-\frac{1}{99}\right)+\frac{1}{2}.\left(\frac{1}{98}-\frac{1}{100}\right)\)
\(A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{97}-\frac{1}{99}+\frac{1}{98}-\frac{1}{100}\right)\)
\(A=\frac{1}{2}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{97}+\frac{1}{98}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}-\frac{1}{6}-...-\frac{1}{99}-\frac{1}{100}\right)\)
\(A=\frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{99}-\frac{1}{100}\right)< \frac{1}{2}.\left(1+\frac{1}{2}\right)=\frac{3}{4}\)
\(S=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{97.99}+\frac{1}{98.100}\)
\(S< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{97.98}+\frac{1}{98.99}\)
\(S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\)
\(S< 1-\frac{1}{99}< 1\)
=> S < 1
\(E=\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{97.99}\)
\(\Rightarrow E=2\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\) (đặt 2 làm nhân tử chung để ta có các số hạng trong ngoặc có hiệu 2 số ở mẫu = tử)
\(\Rightarrow E=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(\Rightarrow E=2.\left(1-\frac{1}{99}\right)\)
\(\Rightarrow E=2.\frac{98}{99}\)
\(\Rightarrow E=\frac{196}{99}\)
*Không biết có đúng ko :)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+..+\frac{1}{97.99}\)
\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{99}\right)\)
\(A=\frac{1}{2}.\frac{98}{99}=\frac{49}{99}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\)
\(\Leftrightarrow A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)\)
\(\Leftrightarrow A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(\Leftrightarrow A=\frac{1}{2}.\frac{98}{99}=\frac{49}{99}\)