Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có x + y = 25
=> (x + y)2 = 625
=> x2 + y2 + 2xy = 625
=> x2 + y2 + 10 = 625
=> x2 +y2 = 615
b) Ta có x + y = 3
=> (x + y)3 = 27
=> x3 + 3x2y + 3xy2 + y3 = 27
=> x3 + y3 + 3xy(x + y) = 27
=> x3 + y3 + 9xy = 27
Lại có x + y = 3
=> (x + y)2 = 9
=> x2 + y2 + 2xy = 9
=> 2xy = 4
=> xy = 2
Khi đó x3 + y3 + 9xy + 27
=> x3 + y3 + 18 = 27
=> x3 + y3 = 9
c) Ta có x - y = 5
=> (x - y)2 = 25
=> x2 + y2 - 2xy = 25
=> 2xy = -10
=> xy = -5
Khi đó : x3 - y3 = (x - y)(x2 + xy + y2) = 5(15 - 5) = 5.10 = 50
Bài 4.
a) x2 + y2 = x2 + 2xy + y2 - 2xy
= ( x2 + 2xy + y2 ) - 2xy
= ( x + y )2 - 2xy
= 252 - 2.136
= 625 - 272
= 353
b) x + y = 3
⇔ ( x + y )2 = 9
⇔ x2 + 2xy + y2 = 9
⇔ 5 + 2xy = 9 ( gt x2 + y2 = 5 )
⇔ 2xy = 4
⇔ xy = 2
x3 + y3 = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2
= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )
= ( x + y )3 - 3xy( x + y )
= 33 - 3.2.3
= 27 - 18
= 9
a) \(x^2+y^2=\left(x+y\right)^2-2xy\Rightarrow8=\left(x+y\right)^2-2.4\Rightarrow\orbr{\begin{cases}x+y=4\\x+y=-4\end{cases}.}\)
=>\(\left(x+y\right)^3=\orbr{\begin{cases}4^3=64\\\left(-4\right)^3=-64\end{cases}}.\)
Còn mình thì sẽ giải câu b (câu a bạn giải rất chính xác):
\(\left(x-y\right)^2=x^2+y^2-2xy\Rightarrow\)\(\left(x-y\right)^2=16-2.8=0\)
\(\Rightarrow\) \(x-y=0\)
\(\Rightarrow\left(x-y\right)^3=0^3=0\)
Ta có:(x4+y4)=(x2+y2)2-2.x2.y2
=(x2+y2)2-2.xy.xy
=152-2.6.6
=225-72
=153
x^2+ y^2 = 15 => x^4 + 2x^2.y^2 + y^4 = 225
<=> x^4 + 2.6^2 + y^4 = 225
<=> x^4 + y^4 = 153
1.Theo đầu bài ta có:
\(A=x\left(x+2\right)+y\left(y-2\right)-2xy\)
\(=\left(x^2+2x\right)+\left(y^2-2y\right)-2xy\)
\(=\left(x^2+y^2-2xy\right)+\left(2x-2y\right)\)
\(=\left(x-y\right)^2+2\left(x-y\right)\)
Do x - y = 7 nên:
\(=7^2+2\cdot7\)
\(=49+14\)
\(=63\)
Bài 2. Câu 1:
Đặt A = x2 + y2. Khi đó:
\(A-2xy=x^2+y^2-2xy\)
\(\Rightarrow A-2xy=\left(x-y\right)^2\)
Do xy = 4 ; x - y = 3 nên:
\(\Rightarrow A-2\cdot4=3^2\)
\(\Rightarrow A-8=9\)
\(\Rightarrow A=17\)
Theo bài ra ta có:
\(x^2y+xy^2+x+y=2010\)
\(\Rightarrow xy\left(x+y\right)+\left(x+y\right)=2010\)
\(\Rightarrow\left(x+y\right)\left(xy+1\right)=2010\)
\(\Rightarrow\left(x+y\right)\left(11+1\right)=2010\)
\(\Rightarrow12\left(x+y\right)=2010\Rightarrow x+y=2010\div12=167,5\)
Ta có: \(A=x^4+y^4=\left(x^2\right)^2+2x^2y^2+\left(y^2\right)^2-2x^2y^2\)
\(=\left(x^2+y^2\right)^2-2\left(xy\right)^2\)
\(=\left[\left(x+y\right)^2-2xy\right]^2-2\times11^2\)
\(\Rightarrow\left[\left(167,5\right)^2-2.11\right]^2-245\)
\(\Rightarrow\left(28056,25-22\right)^2-245=785918928,0625\)
\(x^2+y^2=18\)
\(\Leftrightarrow\left(x^2+y^2\right)^2=18^2\)
\(x^4+2x^2y^2+y^4=18^2\)
tự thay số vào tính nhé ~
Ta có : \(\left(x^2+y^2\right)=x^4+2x^2y^2+y^4.\)
\(\Rightarrow18^2=x^4+2\left(xy\right)^2+y^4\)
\(\Rightarrow324=x^4+2.5^2+y^4\)
\(\Rightarrow324=x^4+50+y^4\)
\(\Rightarrow x^4+y^4=274\)