\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2016.2017.2018}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2018

\(S=\left(\frac{3-1}{1.2.3}\right)+\left(\frac{4-2}{2.3.4}\right)+...+\left(\frac{2018-2016}{2016.2017.2018}\right)\)

\(S=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+..+\frac{1}{2016.2017}-\frac{1}{2017.2018}\right)\)

\(S=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2017.2018}\right)\)

Còn lại tự tính nha bn 

20 tháng 10 2018

Lời giải: Sử dụng hằng đẳng thức \(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)  ta có:

Sn=\(\frac{1}{2}\left[\frac{1}{1\times2}-\frac{1}{2\times3}\right]+\frac{1}{2}\left[\frac{1}{2\times3}-\frac{1}{3\times4}\right]+...\)\(+\frac{1}{2}\left[\frac{1}{\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]\)

\(=\frac{1}{2}\left[\frac{1}{1\times2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]=\frac{n\left(n+3\right)}{4\left(n+1\right)\left(n+2\right)}\)

20 tháng 10 2018

\(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{n.\left(n+1\right).\left(n+2\right)}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{n.\left(n+1\right)}-\frac{1}{\left(n+1\right).\left(n+2\right)}\)

\(=\frac{1}{2}-\frac{1}{\left(n+1\right).\left(n+2\right)}\)

27 tháng 9 2015

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2013.2014.2015}=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2013.2014.2015}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2013.2014}-\frac{1}{2014.2015}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4058210}\right)=\frac{1}{2}.\frac{2029104}{4058210}=\frac{1014552}{4058210}\)

27 tháng 9 2015

bài thi cấp huyện của trường TH Quỳnh Bá

11 tháng 7 2017

B = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2015.2016.2017}\)
=) 2B = \(2.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2015.2016.2017}\right)\)
\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2015.2016.2017}\)
\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2015.2016}-\frac{1}{2016.2017}\)
\(\frac{1}{1.2}-\frac{1}{2016.2017}=\frac{1}{2}.\left(1-\frac{1}{1008.2017}\right)=\frac{1}{2}.\left(1-\frac{1}{2033136}\right)\)
\(\frac{1}{2}.\frac{2033135}{2033136}=\frac{1}{4066272}\)
=) B = \(\frac{1}{4066272}:2=\frac{1}{4066272}.\frac{1}{2}=\frac{1}{8132544}\)

11 tháng 7 2017

B = 1(1/1 - 1/2 - 1/3 + 1/2 - 1/3 - 1/4 + ...+ 1/2015 - 1/2016 - 1/2017)

B = 1( 1/1 - 1/2017)

B = 1.2016

B = 2016

Mà em nói nhỏ nghe nè,đây không phải là toán lớp 9 đâu,...mà là ......toán lớp 6 thôi !

1 tháng 12 2016

Xét với n là số nguyên thì : \(\frac{1}{2^{-n}+1}+\frac{1}{2^n+1}=\frac{1}{\frac{1}{2^n}+1}+\frac{1}{2^n+1}=\frac{2^n}{2^n+1}+\frac{1}{2^n+1}=\frac{2^n+1}{2^n+1}=1\)

Vậy ta nhóm hợp lí như sau : 

\(S=\left(\frac{1}{2^{-2013}+1}+\frac{1}{2^{2013}+1}\right)+\left(\frac{1}{2^{-2012}+1}+\frac{1}{2^{2012}+1}\right)+...+\left(\frac{1}{2^{-1}+1}+\frac{1}{2^1+1}\right)+\frac{1}{2^0+1}\)

\(=1+1+...+1+\frac{1}{2}\) (2013 số hạng 1)

\(=2013+\frac{1}{2}\)

10 tháng 1 2017

Bài 2,3 chỉ cần cho mẫu khác 0 còn căn bậc 2 thì lớn hơn 0 là xong

28 tháng 8 2018

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\) (pp trục căn thức ở mẫu)

                          \(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n^2+2n+1-n^2-n\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Áp dụng tính: \(S=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+....+\frac{1}{400\sqrt{399}+399\sqrt{400}}\)

                        \(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)

                          \(=1-\frac{1}{\sqrt{400}}=1-\frac{1}{20}=\frac{19}{20}\)

Vậy S = 19/20

1 tháng 10 2018

Với a , b , c là số hữu tỉ t/m a = b + c ta luôn có \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right|\)

Thật vậy : \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2-2\left(\frac{1}{bc}-\frac{1}{ac}-\frac{1}{ab}\right)}\)

                                                       \(=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2-\frac{2.abc\left(a-b-c\right)}{a^2b^2c^2}}\)(quy đồng lên )

                                                         \(=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2}\left(\text{do a-b-c=0}\right)\)

                                                          \(=\left|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right|\)

Áp dụng ta được \(S=\left|\frac{1}{2}-\frac{1}{1}-1\right|+\left|\frac{1}{3}-\frac{1}{2}-1\right|+...+\left|\frac{1}{100}-\frac{1}{99}-1\right|\)

                               \(=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{99}-\frac{1}{100}\)

                                \(=\left(1+1+1+...+1\right)+\left(1+\frac{1}{2}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{100}\right)\)

                                                    (có 99 số 1) 

                                 \(=99+1-\frac{1}{100}\)            

                                 \(=100-\frac{1}{100}=\frac{9999}{100}\)

4 tháng 2 2020

Bạn ơi cái này mk chỉ ghi cách làm và ct thôi nha 

đây dùng hàng đẳng thức (a-b)(a+b)=a^2-b^2

còn kia là công thức toán lớp 6

5 tháng 2 2020

\(\frac{1}{\sqrt{3}+\sqrt{1}}=\frac{\sqrt{3}-\sqrt{1}}{\left(\sqrt{3}+\sqrt{1}\right)\left(\sqrt{3}-\sqrt{1}\right)}=\frac{\sqrt{3}-\sqrt{1}}{\sqrt{3^2}-\sqrt{1^2}}=\frac{1}{2}\left(\sqrt{3}-\sqrt{1}\right)\)

Tương tự:

\(\frac{1}{\sqrt{5}+\sqrt{3}}=\frac{1}{2}\left(\sqrt{5}-\sqrt{3}\right)\)

.....

\(\frac{1}{\sqrt{2019}+\sqrt{2017}}=\frac{1}{2}\left(\sqrt{2019}-\sqrt{2017}\right)\)

Cộng các vế với nhau ta được:

\(S=\frac{1}{2}\left(\sqrt{2019}-\sqrt{1}\right)=\frac{1}{2}\left(\sqrt{2019}-1\right)\)