Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải: Sử dụng hằng đẳng thức \(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\) ta có:
Sn=\(\frac{1}{2}\left[\frac{1}{1\times2}-\frac{1}{2\times3}\right]+\frac{1}{2}\left[\frac{1}{2\times3}-\frac{1}{3\times4}\right]+...\)\(+\frac{1}{2}\left[\frac{1}{\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]\)
\(=\frac{1}{2}\left[\frac{1}{1\times2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]=\frac{n\left(n+3\right)}{4\left(n+1\right)\left(n+2\right)}\)
\(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{n.\left(n+1\right).\left(n+2\right)}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{n.\left(n+1\right)}-\frac{1}{\left(n+1\right).\left(n+2\right)}\)
\(=\frac{1}{2}-\frac{1}{\left(n+1\right).\left(n+2\right)}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2013.2014.2015}=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2013.2014.2015}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2013.2014}-\frac{1}{2014.2015}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4058210}\right)=\frac{1}{2}.\frac{2029104}{4058210}=\frac{1014552}{4058210}\)
B = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2015.2016.2017}\)
=) 2B = \(2.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2015.2016.2017}\right)\)
= \(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2015.2016.2017}\)
= \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2015.2016}-\frac{1}{2016.2017}\)
= \(\frac{1}{1.2}-\frac{1}{2016.2017}=\frac{1}{2}.\left(1-\frac{1}{1008.2017}\right)=\frac{1}{2}.\left(1-\frac{1}{2033136}\right)\)
= \(\frac{1}{2}.\frac{2033135}{2033136}=\frac{1}{4066272}\)
=) B = \(\frac{1}{4066272}:2=\frac{1}{4066272}.\frac{1}{2}=\frac{1}{8132544}\)
B = 1(1/1 - 1/2 - 1/3 + 1/2 - 1/3 - 1/4 + ...+ 1/2015 - 1/2016 - 1/2017)
B = 1( 1/1 - 1/2017)
B = 1.2016
B = 2016
Mà em nói nhỏ nghe nè,đây không phải là toán lớp 9 đâu,...mà là ......toán lớp 6 thôi !
Xét với n là số nguyên thì : \(\frac{1}{2^{-n}+1}+\frac{1}{2^n+1}=\frac{1}{\frac{1}{2^n}+1}+\frac{1}{2^n+1}=\frac{2^n}{2^n+1}+\frac{1}{2^n+1}=\frac{2^n+1}{2^n+1}=1\)
Vậy ta nhóm hợp lí như sau :
\(S=\left(\frac{1}{2^{-2013}+1}+\frac{1}{2^{2013}+1}\right)+\left(\frac{1}{2^{-2012}+1}+\frac{1}{2^{2012}+1}\right)+...+\left(\frac{1}{2^{-1}+1}+\frac{1}{2^1+1}\right)+\frac{1}{2^0+1}\)
\(=1+1+...+1+\frac{1}{2}\) (2013 số hạng 1)
\(=2013+\frac{1}{2}\)
Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\) (pp trục căn thức ở mẫu)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n^2+2n+1-n^2-n\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng tính: \(S=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+....+\frac{1}{400\sqrt{399}+399\sqrt{400}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)
\(=1-\frac{1}{\sqrt{400}}=1-\frac{1}{20}=\frac{19}{20}\)
Vậy S = 19/20
Với a , b , c là số hữu tỉ t/m a = b + c ta luôn có \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right|\)
Thật vậy : \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2-2\left(\frac{1}{bc}-\frac{1}{ac}-\frac{1}{ab}\right)}\)
\(=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2-\frac{2.abc\left(a-b-c\right)}{a^2b^2c^2}}\)(quy đồng lên )
\(=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2}\left(\text{do a-b-c=0}\right)\)
\(=\left|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right|\)
Áp dụng ta được \(S=\left|\frac{1}{2}-\frac{1}{1}-1\right|+\left|\frac{1}{3}-\frac{1}{2}-1\right|+...+\left|\frac{1}{100}-\frac{1}{99}-1\right|\)
\(=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+1+1+...+1\right)+\left(1+\frac{1}{2}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{100}\right)\)
(có 99 số 1)
\(=99+1-\frac{1}{100}\)
\(=100-\frac{1}{100}=\frac{9999}{100}\)
Bạn ơi cái này mk chỉ ghi cách làm và ct thôi nha
đây dùng hàng đẳng thức (a-b)(a+b)=a^2-b^2
còn kia là công thức toán lớp 6
\(\frac{1}{\sqrt{3}+\sqrt{1}}=\frac{\sqrt{3}-\sqrt{1}}{\left(\sqrt{3}+\sqrt{1}\right)\left(\sqrt{3}-\sqrt{1}\right)}=\frac{\sqrt{3}-\sqrt{1}}{\sqrt{3^2}-\sqrt{1^2}}=\frac{1}{2}\left(\sqrt{3}-\sqrt{1}\right)\)
Tương tự:
\(\frac{1}{\sqrt{5}+\sqrt{3}}=\frac{1}{2}\left(\sqrt{5}-\sqrt{3}\right)\)
.....
\(\frac{1}{\sqrt{2019}+\sqrt{2017}}=\frac{1}{2}\left(\sqrt{2019}-\sqrt{2017}\right)\)
Cộng các vế với nhau ta được:
\(S=\frac{1}{2}\left(\sqrt{2019}-\sqrt{1}\right)=\frac{1}{2}\left(\sqrt{2019}-1\right)\)
\(S=\left(\frac{3-1}{1.2.3}\right)+\left(\frac{4-2}{2.3.4}\right)+...+\left(\frac{2018-2016}{2016.2017.2018}\right)\)
\(S=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+..+\frac{1}{2016.2017}-\frac{1}{2017.2018}\right)\)
\(S=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2017.2018}\right)\)
Còn lại tự tính nha bn