Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có lẽ là làm như vầy ạ:
Ta thấy số hạng tổng quát của tổng có dạng \(\frac{1}{\sqrt{n}+\sqrt{n+1}}\) với n là số tự nhiên thỏa mãn: \(1< n< 2006\)
Ta có: \(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)(áp dụng hằng đẳng thức : a2 - b2 = (a-b)(a+b) vào cái mẫu)
Do vậy: \(S=\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{2005}+\sqrt{2006}}\)
\(=\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2005}-\sqrt{2004}+\sqrt{2006}-\sqrt{2005}\)
\(=-\sqrt{2}+\left(\sqrt{3}-\sqrt{3}\right)+...+\left(\sqrt{2005}-\sqrt{2005}\right)+\sqrt{2006}\) (gom hết các số hạng giống nhau bỏ vô ngoặc)
\(=\sqrt{2006}-\sqrt{2}\)
Vậy \(S=\sqrt{2006}-\sqrt{2}\)
Ap dung cong thuc \(\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}=1+\frac{1}{a}-\frac{1}{a+1}\)
ta co \(E=1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2005}-\frac{1}{2006}=2004+\frac{1}{2}-\frac{1}{2006}\)
Ta có:
\(E=\sqrt{\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{\left(-3\right)^2}}+\sqrt{\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{\left(-4\right)^2}}+...+\sqrt{\frac{1}{1^2}+\frac{1}{2005^2}+\frac{1}{\left(-2006\right)^2}}\)
DO: \(1+2+\left(-3\right)=0;1+3+\left(-4\right)=0;...;1+2005+\left(-2006\right)=0\)
=> TA ĐƯỢC: \(E=\sqrt{\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{-3}\right)^2}+\sqrt{\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{-4}\right)^2}+...+\sqrt{\left(\frac{1}{1}+\frac{1}{2005}+\frac{1}{-2006}\right)^2}\)
=> \(E=\frac{1}{1}+\frac{1}{2}-\frac{1}{3}+\frac{1}{1}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1}+\frac{1}{2005}-\frac{1}{2006}\)
=> \(E=\left(\frac{1}{1}+\frac{1}{1}+...+\frac{1}{1}\right)+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\right)\)
DO TRONG E CÓ TẤT CẢ 2004 CĂN THỨC
=> \(E=2004+\frac{1}{2}-\frac{1}{2006}=2004+\frac{501}{1003}=\frac{2010513}{1003}\)
\(\forall n\inℕ^∗\)ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) (*)
Thay n=1; n=2; n=3; .....; n=2004 Ta có:
\(S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2004}}-\frac{1}{\sqrt{2005}}\)
\(=1-\frac{1}{\sqrt{2005}}\)
1/ \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=0\)
\(\Leftrightarrow\frac{a+b+c}{abc}=0\)(đúng)
Vậy ta có ĐPCM
2/ \(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2005}+\sqrt{2006}}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2006}-\sqrt{2005}\)
\(=\sqrt{2006}-1\)
\(=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{2006}-\frac{1}{2007}\)
\(=2007-\frac{1}{2007}=\frac{4028048}{2007}\)
\(1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}=1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}+2\left(1.\frac{1}{n}-1.\frac{1}{n+1}-\frac{1}{n}.\frac{1}{n+1}\right)=\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2\); vì \(\frac{1}{n}-\frac{1}{n+1}-\frac{1}{n\left(n+1\right)}=0\)
\(S=\left(1+\frac{1}{1}-\frac{1}{2}\right)+\left(1+\frac{1}{2}-\frac{1}{3}\right)+...+\left(1+\frac{1}{2005}-\frac{1}{2006}\right)\)
\(=2005+1-\frac{1}{2006}=2005\frac{2005}{2006}\)