K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 11 2021

\(C_{n-1}^0+C_{n-1}^1+...+C_{n-1}^{n-1}=2^{n-1}\)

\(\Rightarrow S=n.2^{n-1}\)

31 tháng 8 2016

1=(2n+1)C0, (2n+1)Cn=(2n+1)C(n+1)...

 

NV
16 tháng 9 2020

Xét khai triển: \(\left(x+1\right)^{2n}=C_{2n}^0+C_{2n}^1x+C_{2n}^2x^2+...+C_{2n}^{2n}x^{2n}\)

Thay \(x=1\) ta được:

\(2^{2n}=C_{2n}^0+C_{2n}^1+...+C_{2n}^{2n}\)

\(\Leftrightarrow4^n=C_{2n}^0+C_{2n}^1+...+C_{2n}^{2n}\)

1 tháng 4 2021

 Mình nhầm \(C^1_{2016}a_{2015}\)thành  \(C^1_{2016}a^{2015}\)

10 tháng 11 2016

\(\sum_{k=1}^nC^k_{2n+1}=2^{20}-1\)

\(\frac{\sum_{k=1}^n\left(2C^k_{2n+1}\right)+1+1}{2}=2^{20}\)

\(C^0_{2n+1}+\sum_{k=1}^n\left(C^k_{2n+1}+C_{2n+1}^{2n+1-k}\right)+C^{2n+1}_{2n+1}=2^{21}\)

\(\sum_{k=0}^{2n+1}C^k_{2n+1}=2^{21}\)

\(\Rightarrow2n+1=21\Rightarrow n=10\)

Số hạng chứa \(x^{26}\) có dạng là:

\(C^k_{10}.\left(\frac{1}{x^4}\right)^k.\left(x^7\right)^{10-k}\Rightarrow-4k+7.\left(10-k\right)=26\)

\(\Rightarrow k=4\)

hệ số của \(x^{26}\) là:

\(C^4_{10}=210\)

27 tháng 11 2021

dạ chỉ em cái dòng số 3 sao ra 21 nha, em ko biết .. oho

NV
19 tháng 11 2018

\(\left(k+1\right)C^k_n=kC^k_n+C^k_n=\dfrac{n!k}{k!\left(n-k\right)!}+C^k_n=\dfrac{\left(n-1\right)!n}{\left(k-1\right)!\left(n-1-k+1\right)!}+C^k_n=nC^{k-1}_{n-1}+C^k_n\)

\(\Rightarrow C^0_{2000}+\sum\limits^{2000}_{k=1}\left(k+1\right)C^k_{2000}=C^0_{2000}+\sum\limits^{2000}_{k=1}\left(2000C^{k-1}_{1999}+C^k_{2000}\right)=2000\sum\limits^{2000}_{k=1}C^{k-1}_{1999}+\sum\limits^{2000}_{k=0}C^k_{2000}\)

\(=2000.2^{1999}+2^{2000}=2^{1999}.2002\)

NV
12 tháng 11 2019

Đầu tiên ta có \(\left(1+x\right)^{20}\) có SHTQ \(C_{20}^kx^k\)

\(\Rightarrow\) Hệ số của số hạng chứa \(x^{10}\)\(C_{20}^{10}\) (1)

Ta cũng có khai triển:

\(\left(1+x\right)^{10}\left(x+1\right)^{10}=\sum\limits^{10}_{k=0}\sum\limits^{10}_{i=0}C_{10}^kC^i_{10}x^{10+i-k}\)

Số hạng chứa \(x^{10}\Rightarrow10+i-k=10\Rightarrow i=k\)

\(\Rightarrow\) Hệ số của số hạng chứa \(x^{10}\) là:

\(\sum\limits^{10}_{k=0}\sum\limits^{10}_{i=0}C_{10}^kC_{10}^i=\sum\limits^{10}_{k=0}\left(C_{10}^k\right)^2=\left(C_{10}^0\right)^2+\left(C_{10}^1\right)^2+...+\left(C_{10}^{10}\right)^2\)

Mà từ (1) ta có hệ số của số hạng chứa \(x^{10}\)\(C_{20}^{10}\Rightarrow S=C_{20}^{10}\)

12 tháng 4 2020

Bạn sửa lại dòng thứ 5 của câu 1 giúp mình:

\(-\frac{1}{24}\left(n-2\right)\left(n-3\right)\left(n+2\right)\left(n-11\right)\)

2)

\(Y_n=\frac{\frac{\left(n+4\right)!}{n!}}{\left(n+2\right)!}-\frac{143}{4.n!}\)

\(=\frac{\left(n+4\right)\left(n+3\right)}{n!}-\frac{143}{4n!}\)

\(=\frac{1}{4n!}\left(2n+19\right)\left(2n-5\right)\)

\(Y_n< 0\)

<=> \(\frac{1}{4n!}\left(2n+19\right)\left(2n-5\right)\)<0

<=> \(\left(2n+19\right)\left(2n-5\right)< 0\)

<=> \(-\frac{19}{2}< n< \frac{5}{2}\)

Đối chiếu với n \(\ge\)1 và n là số tự nhiên

ta có: n = 1 hoặc n = 2

Vậy các số hạng âm của dãy số ( Y_n) là:

\(Y_1=-\frac{63}{4};Y_2=-\frac{23}{8}\)

12 tháng 4 2020

1) \(X_n=\frac{5}{4}.\frac{\left(n-2\right)!}{\left(n-4\right)!}-\frac{\left(n-1\right)!}{4!\left(n-5\right)!}+\frac{\left(n-1\right)!}{3!\left(n-4\right)!}\)

\(=\frac{5}{4}.\left(n-2\right)\left(n-3\right)-\frac{\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(n-4\right)}{24}+\frac{\left(n-1\right)\left(n-2\right)\left(n-3\right)}{6}\)

= \(\left(n-2\right)\left(n-3\right)\left(\frac{5}{4}-\frac{\left(n-1\right)\left(n-4\right)}{24}+\frac{n-1}{6}\right)\)

= \(\left(n-2\right)\left(n-3\right)\left(-\frac{n^2}{24}+\frac{3n}{8}+\frac{11}{12}\right)\)

= - \(\left(n-2\right)\left(n-3\right)\left(n+2\right)\left(n-11\right)\)

Để \(X_n>0\)

<=> \(\left(n-2\right)\left(n-3\right)\left(n+2\right)\left(n-11\right)\) < 0

<=> n \(\in\left(-2;2\right)\cup\left(3;11\right)\)

Đối chiếu đk n \(\ge\)5

ta có n \(\in\) [ 5; 11 ) và n là số tự nhiên.

Các số hạng dương là:

\(X_5;X_6;...;X_{10}\) ( tự thay vào rồi tính kết quả nhé)

VD: \(X_5=\frac{5}{4}.A^2_3-C^4_4+C^3_4=\frac{21}{2}\)