\(A=\frac{1}{2.\left(1+2\right)}+\frac{1}{3.\left(1+2+3\right)}+\frac{1}{4.\left(1+2+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 8 2024

Lời giải:

** Sửa đề:

$A=\frac{1}{2}(1+2)+\frac{1}{3}(1+2+3)+\frac{1}{4}(1+2+3+4)+....+\frac{1}{2013}(1+2+3+...+2013)$

$A=\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+\frac{1}{4}.\frac{4.5}{2}+....+\frac{1}{2013}.\frac{2013.2014}{2}$

$=\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+....+\frac{2014}{2}$

$=\frac{3+4+5+...+2014}{2}$

$=\frac{1+2+3+4+5+...+2014}{2}-\frac{3}{2}$
$=\frac{2014.2015:2}{2}-\frac{3}{2}$

$=1014551$

17 tháng 7 2016

a.

\(-2^3+2^2+\left(-1\right)^{2013}=-8+4-1=-5\)

b.

\(\left(3^3\right)^2-\left[\left(-2\right)^3\right]^2-\left(-5\right)^2=27^2-\left(-8\right)^2-25=729-64-25=640\)

c.

\(2^3+3\times\left(-\frac{1}{2016}\right)^0-\left(\frac{1}{2}\right)^2\times4-\left[\left(-2\right)^2\div\frac{1}{2}\right]=8+3\times0-\frac{1}{4}\times4-\left(4\times2\right)=8+3-1-8=2\)

17 tháng 9 2017

\(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{100^2}-1\right)\)( có 2013 thừa số ) 

\(A=\left(-\frac{3}{2^2}\right).\left(-\frac{8}{3^2}\right).\left(-\frac{15}{4^2}\right).....\left(-\frac{\text{4056196}}{2014^2}\right)\)

\(-A=\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{4056196}{2014^2}=\frac{1.3.2.4.3.5....2013.2015}{2.2.3.3.4.4.....2014.2014}\)

\(-A=\frac{\left(1.2.3...2013\right).\left(3.4.5.6...2015\right)}{\left(2.3.4.5....2014\right).\left(2.3.4.5...2014\right)}=\frac{1.2015}{2.2014}=\frac{2015}{4028}\)

\(A=-\frac{2015}{4028}\)

Vậy.....

17 tháng 9 2017

-A=(\(1-\frac{1}{2^2}\)) . (\(1-\frac{1}{3^2}\))......(\(1-\frac{1}{2014^2}\))

-A= \(\frac{3}{4}\)\(\frac{8}{9}\). ...... \(\frac{4056195}{4056196}\)

-A= \(\frac{1.3.2.4.......2013.2015}{2.2.3.3.......2.14.2014}\)

-A= \(\frac{\left(1.2.3...2013\right)\left(3.4.5...2015\right)}{\left(2.3.4...2014\right)\left(2.3.4...2014\right)}\)

-A= \(\frac{2015}{2014.2}\)

-A=\(\frac{2015}{4028}\)

15 tháng 6 2019

Đề là gì thế bạn? Tính hay So sánh?

15 tháng 6 2019

đề là tính các bạn ạ. Mình xin lỗi vì quên ko ghi đề.

1 tháng 11 2016

\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{2012}-1\right)\left(\frac{1}{2013}-1\right)\)

\(=\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}...\frac{-2011}{2012}.\frac{-2012}{2013}\)

\(=\frac{\left(-1\right).\left(-2\right).\left(-3\right)...\left(-2011\right).\left(-2012\right)}{2.3.4....2013}\)

\(=\frac{1.2.3...2011.2012}{2.3.4.5...2013}\) ( vì các số hạng ở trên tử chẵn )

\(=\frac{1}{2013}\)

 

13 tháng 8 2016

Ta áp dụng công thức: \(a-b=\left[-\left(b-a\right)\right]\)

\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{2012}-1\right)\left(\frac{1}{2013}-1\right)\)

\(=-\left[\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2012}\right)\left(1-\frac{1}{2013}\right)\right]\)

\(=-\left(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{2011}{2012}.\frac{2012}{2013}\right)\)

\(=-\frac{1.2.3...2011.2012}{2.3.4....2012.2013}\)

\(=-\frac{1}{2013}\)

13 tháng 8 2016

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{2012}{2013}\)

Liệt tử thừa với mẫu thừa:

\(=\frac{1}{2013}\)

Chúc em học tốt^^