K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2018

\(S=\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{300}\)

\(S=\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{600}\)

\(S=\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{24.25}\)

\(S=2.(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{24.25})\)

\(S=2.(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{24}-\dfrac{1}{25})\)

\(S=2.(\dfrac{1}{4}-\dfrac{1}{25})\)

\(S=2.\dfrac{21}{100}\)

\(S=\dfrac{21}{50}\)

\(\Rightarrow S=\dfrac{21}{50}\)

10 tháng 5 2018

S = \(\dfrac{1}{10}\) + \(\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{300}\)

S = \(\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{600}\)

S = \(\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{24.25}\)

S = 2 (\(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{24.25}\))

S = 2 (\(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{24}-\dfrac{1}{25}\))

S = 2 . (\(\dfrac{1}{4}-\dfrac{1}{25}\))

S = 2 . \(\dfrac{21}{100}\)

=> S = \(\dfrac{21}{50}\)

6 tháng 9 2017

Đặt \(A=\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{300}\)

\(=\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{600}\)

\(=\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{24.25}\)

\(=2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{24.25}\right)\)

\(=2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{24}-\dfrac{1}{25}\right)\)

\(=2\left(\dfrac{1}{2}-\dfrac{1}{25}\right)\)

\(=2\cdot\dfrac{23}{50}=\dfrac{23}{25}\)

Vậy A = \(\dfrac{23}{25}\).

6 tháng 9 2017

It's very easy :)))))

Call expression is A, we have:

\(A=\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{300}.\)

\(\Rightarrow2A=2\left(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{300}\right).\)

\(\Rightarrow2A=\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{600}.\)

\(\Rightarrow2A=\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{24.25}.\)

\(\Rightarrow2A=2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{24}-\dfrac{1}{25}\right).\)

\(\Rightarrow2A=2\left(\dfrac{1}{2}-\dfrac{1}{25}\right).\)

\(\Rightarrow2A=2\left(\dfrac{25}{50}-\dfrac{2}{50}\right).\)

\(\Rightarrow2A=2.\dfrac{23}{50}=\dfrac{23}{25}.\)

Vậy.....

12 tháng 7 2017

Nếu:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+n}{b+n}< 1\left(n\in N\right)\)

\(B=\dfrac{10^{20}+1}{10^{21}+1}< 1\)

\(B< \dfrac{10^{20}+1+9}{10^{21}+1+9}\Rightarrow B< \dfrac{10^{20}+10}{10^{21}+10}\Rightarrow B< \dfrac{10\left(10^{19}+1\right)}{10\left(10^{20}+1\right)}\Rightarrow B< \dfrac{10^{19}+1}{10^{20}+1}=A\)\(\Rightarrow B< A\)

11 tháng 3 2017

\(A=\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{120}\)

\(A=\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{240}\)

\(A=\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{15.16}\)

\(A=2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{15.16}\right)\)

\(A=2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)

\(A=2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)

\(A=2.\dfrac{3}{16}\)

\(A=\dfrac{3}{8}\)

11 tháng 3 2017

\(B=\dfrac{4}{3.7}+\dfrac{4}{7.11}+\dfrac{4}{11.15}+...+\dfrac{4}{107.111}\)

\(B=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{107}-\dfrac{1}{111}\)

\(B=\dfrac{1}{3}-\dfrac{1}{111}\)

\(B=\dfrac{12}{37}\)

29 tháng 4 2018

\(\dfrac{1}{2}N=\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)

\(\dfrac{1}{2}N=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(\dfrac{1}{2}N=\dfrac{1}{2}-\dfrac{1}{10}=\dfrac{2}{5}\)

N=\(\dfrac{2}{5}:\dfrac{1}{2}=\dfrac{4}{5}\)

3 tháng 4 2018

\(B=\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{120}\)

\(\Leftrightarrow B=\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{240}\)

\(\Leftrightarrow B=2\left(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+...+\dfrac{1}{240}\right)\)

\(\Leftrightarrow B=2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{15.16}\right)\)

\(\Leftrightarrow B=2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)

\(\Leftrightarrow B=2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)=\dfrac{3}{8}\)

\(\dfrac{3}{8}< \dfrac{1}{2}\)

\(\Rightarrow B< \dfrac{1}{2}\left(ĐPCM\right)\)

12 tháng 3 2017

Hỏi đáp Toán

17 tháng 4 2017

Thay dấu ba chấm bởi x rồi tìm x.

Chẳng hạn:

\(a) \) \(\dfrac{7}{9}-\dfrac{x}{3}=\dfrac{1}{9}\)

\(\Rightarrow\dfrac{x}{3}=\dfrac{7}{9}-\dfrac{1}{9}\)

\(\Rightarrow\dfrac{x}{3}=\dfrac{6}{9}=\dfrac{2}{3}\)

Vậy x = 2

Đáp số:

a) x = 2

b) x = 3

c) x = 7

d) x =19.

3 tháng 5 2018

Giải bà i 64 trang 34 SGK Toán 6 Tập 2 | Giải toán lá»p 6

15 tháng 4 2017

\(\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{120}\)

\(=\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{240}\)

\(=2\times\left(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+...\dfrac{1}{240}\right)\)

\(=2\times\left(\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+\dfrac{1}{6\times7}+...+\dfrac{1}{15\times16}\right)\)

\(=2\times\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)

\(=2\times\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)

\(=\dfrac{3}{8}\)

15 tháng 4 2017

=2/20+2/30+2/42+.....+2/240

=2/4.5+2/5.6+2/6.7+.....+2/15.16

=1/2[1/4.5+1/5.6+1/6.7+.....+1/15.16]

=1.2[1/4-1/5+1/5-1/6+.....+1/15-1/16]

=1/2[1/4-1/16]

=1/2.3/16

=3/32

27 tháng 2 2019

1 )Ta có

\(M=\left(\dfrac{1}{2^2}-1\right)\cdot\left(\dfrac{1}{3^2}-1\right)\cdot\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{100^2}-1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right).....\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{3}{2}\cdot\dfrac{-2}{3}\cdot\dfrac{4}{3}\cdot\dfrac{-3}{4}\cdot\dfrac{5}{4}\cdot\cdot\cdot\cdot\dfrac{-99}{100}\cdot\dfrac{101}{100}\)

\(=\dfrac{-1\cdot\left(-2\right)\cdot\left(-3\right)\cdot3\cdot\left(-4\right)\cdot4\cdot\left(-5\right)\cdot5....\cdot\left(-100\right)\cdot100\cdot101}{2^2\cdot3^2\cdot4^2....\cdot100^2}\)

\(=-\dfrac{101}{200}< \dfrac{1}{2}\)

2 ) Số phân số của biểu thức B là 180 phân số

Ta có

\(\dfrac{1}{20}>\dfrac{1}{200};\dfrac{1}{21}>\dfrac{1}{200};\dfrac{1}{22}>\dfrac{1}{200};....;\dfrac{1}{199}>\dfrac{1}{200}\)

\(\Rightarrow B=\dfrac{1}{20}+\dfrac{1}{21}+...+\dfrac{1}{200}>\dfrac{1}{200}\cdot180=\dfrac{9}{10}\)