Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1.3 + 3.5 |+ 5.7 + ... + 97.99
6A = 1.3.6 + 3.5.(7-1) + 5.7.(9-3) + ... + 97.99.(101-95)
6A = 1.3.6 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + ... + 97.99.101 - 95.97.99
6A = 1.3.6 + 97.99.101 - 1.3.5
6A = 3.(1 + 97.33.101)
2A = 1 + 323301 = 323302
A = 161651
A=1.3+3.5+5.7+...+95.97+97.99
6A=1.3.6+3.5.6+5.7.6+...+95.97.96+97.99.96
=1.3.(5+1)+3.5.(7-1)+...+95.97.(99-93)+97.99.(101-95)
=1.1.3+1.3.5-1.3.5+3.5.7-....-95.97.99+97.99.101
=3.97.99.101
=>A=\(\frac{3+97.99.101}{6}=\frac{1+97.33.101}{2}\)\(=161651\)
Khoảng cách giữa hai thừa số trong mỗi số hạng là 2, nhân 2 vế của A với 3 lần khoảng cách này ta được :
6A=1.3.6 + 3.5.6 + 5.7.6 + ... + 97.99.6
=1.3(5+1) + 3.5(7-1) + 5.7(9-3) + ... + 97.99(101-95)
=1.3.5 + 1.3 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + ... + 97.99.101 - 95.97.99
=1.3.5 + 3 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7+ ... + 97.99.101 - 97.97.99
=3+97.99.101
\(\frac{1+97.33.101}{1}=161651\)
Ta có :
B = 1.3 + 3.5 + 5.7 + 7.9 + ... + 97.99
6.B = 1.3.6 + 3.5.6 + 5.7.6 +...+ 97.99.6
6.B = 1.3.[ 5 - (-1) ] + 3.5.( 7 - 1 ) + 5.7.( 9 - 3 ) + ...+ 97.99.( 101 - 95 )
6.B = 1.3.5 - ( -1).3.5 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + ... + 97.99.101 - 95.97.99
6.B = 97.99.101 - ( -1 ) .3.5
6.B = 97.99.101 + 1.3.5
6.B = 969918
=> B = 161653.
bài này có người đã làm rùi mà bạn, vô phần câu hỏi tương tự sẽ có bạn nhé!
\(A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)\)
\(A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(A=\frac{1}{2}.\left(1-\frac{1}{99}\right)\)
\(A=\frac{1}{2}.\frac{98}{99}\)
\(A=\frac{49}{99}\)
\(A=\frac{1}{1\cdot3} +\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{95\cdot97}+\frac{1}{97\cdot99}\)
\(2A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{95\cdot97}+\frac{2}{97\cdot99}\)
\(2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{95}-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\)
\(2A=1-\frac{1}{99}\)
\(2A=\frac{98}{99}\)
\(A=\frac{98}{99}\text{ : }2\)
\(A=\frac{98}{99}\cdot\frac{1}{2}\)
\(A=\frac{49}{99}\)
\(B=1.3+3.5+5.7+.....+95.97+97.99\)
\(\frac{2}{B}=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{95.97}+\frac{2}{97.99}\)
\(\frac{2}{B}=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+......+\frac{1}{97}-\frac{1}{99}\)
\(\frac{2}{B}=\frac{1}{1}-\frac{1}{99}=\frac{90}{99}=\frac{30}{33}\)
\(B=\frac{2}{\frac{30}{33}}=\frac{2.33}{30}=\frac{33}{15}\)
\(6A=1.3.6+3.5.6+5.7.6+...+97.99.6\)
= \(1.3\left(5+1\right)+3.5\left(7-1\right)+5.7\left(9-3\right)+...97.99\left(101-95\right)\)
= \(.3.5+1.3+3.5.7-1.3.5+5.7.9-3.5.7+...+97.99.101-97.97.99\)
= 3 + 97 .99 . 101
= \(\frac{1+97.33.101}{2}\)
Ta có:
G = 1.3 + 3.5 + 5.7 + ... + 97.99
=> 6G = 6.(1.3 + 3.5 + 5.7 + ... + 97.99)
=> 6G = 1.3.6 + 3.5.6 + 5.7.6 + ... + 97.99.6
=> 6G = 1.3.(5 + 1) + 3.5.(7 - 1) + 5.7.(9 - 3) + ... + 97.99.(101 - 95)
=> 6G = 1.3.5 + 1.3.1 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + ... + 97.99.101 - 95.97.99
=> 6G = 97.99.101 + 1.3.1
=> G = (97.99.101 + 1.3.1) : 6
=> G = 161651