Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
=\(7\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)
=\(7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{69}-\frac{1}{70}\right)\)
=\(7\left(\frac{1}{10}-\frac{1}{70}\right)\)
=\(7.\frac{3}{35}\)
=\(\frac{3}{5}\)
B=\(\frac{1}{25.27}+\frac{1}{27.29}+\frac{1}{29.31}+...+\frac{1}{73.75}\)
=\(\frac{1}{2}\left(\frac{2}{25.27}+\frac{2}{27.29}+\frac{2}{29.31}+...+\frac{2}{73.75}\right)\)
=\(\frac{1}{2}\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\right)\)
=\(\frac{1}{2}\left(\frac{1}{25}-\frac{1}{75}\right)\)
=\(\frac{1}{2}.\frac{2}{75}\)
=\(\frac{1}{75}\)
a,
suy ra A = 7. (1/10.11+1/11.12+1/12.13+.......+1/69.70)
suy ra A = 7. ( 1/10 - 1/11+ 1/11 - 1/12 + 1/12 - 1/13+ ............. + 1/69 - 1/70)
suy ra A = 7. ( 1/ 10 - 1/70)
suy ra A= 7. 3/35
suy ra A= 3/5
Giải:
a) C = \(\frac{6}{15.18}+\frac{6}{18.21}+...+\frac{6}{87.90}\)
C = \(\frac{6}{3}.\left(\frac{3}{15.18}+\frac{3}{18.21}+...+\frac{3}{87.90}\right)\)
C = \(\frac{6}{3}.\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{87}-\frac{1}{90}\right)\)
C = \(\frac{6}{3}.\left(\frac{1}{15}-\frac{1}{90}\right)\)
C = \(\frac{6}{3}.\frac{1}{18}\)
C = \(2.\frac{1}{18}\)
C = \(\frac{1}{9}\)
Vậy C = \(\frac{1}{9}\)
b) D = \(\frac{1}{25.27}+\frac{1}{27.29}+...+\frac{1}{73.75}\)
D = \(\frac{1}{2}.\left(\frac{2}{25.27}+\frac{2}{27.29}+...+\frac{2}{73.75}\right)\)\
D = \(\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+...+\frac{1}{73}-\frac{1}{75}\right)\)
D = \(\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{75}\right)\)
D = \(\frac{1}{2}.\frac{2}{75}\)
D = \(\frac{1}{75}\)
Vậy D = \(\frac{1}{75}\)
c) E = \(\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{38.41}\)
E = \(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{38}-\frac{1}{41}\)
E = \(\frac{1}{8}-\frac{1}{41}\)
E = \(\frac{33}{328}\)
Vậy E = \(\frac{33}{328}\)
Mình nói lí thuyết cho nghe:
Với phân số \(\frac{a-b}{a.b}\)\(\left(VD:\frac{1}{1.2};\frac{1}{2.3};\frac{1}{2015.2016};\frac{3}{15.18};\frac{3}{18.21};\frac{1}{10.11};\frac{1}{11.12};...\right)\)thì:
\(\frac{b-a}{a.b}=\frac{b}{a.b}-\frac{a}{a.b}=\frac{1}{a}-\frac{1}{b}\left(VD:\frac{1}{1.2}=\frac{1}{1}-\frac{1}{2};\frac{3}{15.18}=\frac{1}{15}-\frac{1}{18}\right)\)
ÁP dụng để tính:
c) \(\Rightarrow\frac{1}{4}C=\frac{1}{4}\left(\frac{12}{15.18}+\frac{12}{18.21}+...+\frac{12}{87.90}\right)=\frac{3}{15.18}+\frac{3}{18.21}+....+\frac{3}{87.90}\)
\(\Rightarrow\frac{1}{4}C=\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{87}-\frac{1}{90}=\frac{1}{15}-\frac{1}{90}\)
=> \(C=\left(\frac{1}{15}-\frac{1}{90}\right).4\)
a,\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(A=1-\frac{1}{2016}\)suy ra \(A=\frac{2015}{2016}\)
b, \(B=5\left(\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{69.70}\right)\)
\(B=5\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(B=5\left(\frac{1}{10}-\frac{1}{70}\right)\)suy ra \(B=5.\frac{3}{35}\)
\(B=\frac{3}{7}\)
c,\(C=4.\left(\frac{3}{15.18}+\frac{3}{18.21}+...+\frac{3}{87.90}\right)\)
\(C=4.\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{87}-\frac{1}{90}\right)\)
\(C=4.\left(\frac{1}{15}-\frac{1}{90}\right)\)suy ra \(C=4.\frac{1}{18}\)
\(C=\frac{2}{9}\)
A=.....
=\(7.\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+....+\frac{1}{69.70}\right)=7.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+.....+\frac{1}{69}-\frac{1}{70}\right)\)
=\(7.\left(\frac{1}{10}-\frac{1}{70}\right)=7.\frac{3}{35}=\frac{3}{5}\)
MẤY PHẦN SAU CX TÁCH MẪU RA RÙI LÀM NHƯ VẬY
TỰ LÀM NHE
\(B=\frac{1}{3\cdot6}+\frac{1}{6\cdot9}+...+\frac{1}{30\cdot33}\)
\(B=\frac{1}{3}\cdot\left(\frac{3}{3\cdot6}+\frac{3}{6\cdot9}+...+\frac{3}{30\cdot33}\right)\)
\(B=\frac{1}{3}\cdot\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{30}-\frac{1}{33}\right)\)
\(B=\frac{1}{3}\cdot\left(\frac{1}{3}-\frac{1}{33}\right)\)
\(B=\frac{1}{3}\cdot\frac{10}{33}=\frac{10}{99}\)
\(C=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{90}\right)\)
\(C=\left(1-\frac{1}{1\cdot2}\right)+\left(1-\frac{1}{2\cdot3}\right)+...+\left(1-\frac{1}{9\cdot10}\right)\)
\(C=9-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{9\cdot10}\right)\)
\(C=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(C=9-\left(1-\frac{1}{10}\right)\)
\(C=9-\frac{9}{10}=\frac{81}{10}\)
\(C=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(C=7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(C=7\left(\frac{1}{10}-\frac{1}{70}\right)\)
\(C=7.\frac{3}{35}\)
\(C=\frac{3}{5}\)
\(A=\frac{15}{90.94}+\frac{15}{94.98}+...+\frac{15}{146.150}\)
\(A=\frac{4}{4}\left(\frac{15}{90.94}+\frac{15}{94.98}+...+\frac{15}{146.150}\right)\)
\(A=\frac{15}{4}\left(\frac{4}{90.94}+\frac{4}{94.98}+...+\frac{4}{146.150}\right)\)
\(A=\frac{15}{4}\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+...+\frac{1}{146}-\frac{1}{150}\right)\)
\(A=\frac{15}{4}\left(\frac{1}{90}-\frac{1}{150}\right)\)
\(A=\frac{15}{4}.\frac{1}{225}=\frac{1}{60}\)
\(B=\frac{6}{15.18}+\frac{6}{18.21}+...+\frac{6}{87.90}\)
\(B=\frac{3}{3}\left(\frac{6}{15.18}+\frac{6}{18.21}+...+\frac{6}{87.90}\right)\)
\(B=2\left(\frac{3}{15.18}+\frac{3}{18.21}+...+\frac{3}{87.90}\right)\)
\(B=2\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{87}-\frac{1}{90}\right)\)
\(B=2\left(\frac{1}{15}-\frac{1}{90}\right)\)
\(B=2.\frac{1}{18}=\frac{1}{9}\)
Trả lời:
\(A=\frac{15}{90.94}+\frac{15}{94.98}+...+\frac{15}{146.150}\)
\(A=\frac{15}{4}.\left(\frac{4}{90.94}+\frac{4}{94.98}+...+\frac{4}{146.150}\right)\)
\(A=\frac{15}{4}.\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+...+\frac{1}{146}-\frac{1}{150}\right)\)
\(A=\frac{15}{4}.\left(\frac{1}{90}-\frac{1}{150}\right)\)
\(A=\frac{15}{4}.\frac{1}{225}\)
\(A=\frac{1}{60}\)
\(B=\frac{6}{15.18}+\frac{6}{18.21}+...+\frac{6}{87.90}\)
\(B=2.\left(\frac{3}{15.18}+\frac{3}{18.21}+...+\frac{3}{87.90}\right)\)
\(B=2.\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{87}-\frac{1}{90}\right)\)
\(B=2.\left(\frac{1}{15}-\frac{1}{90}\right)\)
\(B=2.\frac{1}{18}\)
\(B=\frac{1}{9}\)
\(7.\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\\ 7.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+....+\frac{1}{69}-\frac{1}{70}\right)\\ 7.\left(\frac{1}{10}-\frac{1}{70}\right)\\ 7.\frac{6}{70}=\frac{3}{5} \)