Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dấu "." là dấu "x" nhé, học sinh cấp 2 phải dùng dấu "." =)))
Đặt A = 2 + 6 + 12 + 20 + ..... + 10100
A = 1.2 + 2.3 + 3.4 + 4.5 + .. + 100.101
3.A = 1.2.3 + 2.3.3 + 3.4.3 + 4.5.3 + .. + 100.101.3
3.A = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 100.101. (102 - 99)
3.A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 100.101.102 - 99.100.101
Các số trên đều bị giản ước bởi các số trước còn lại 100.101.102
=> 3A = 100.101.102
=> A = 100.101.102 : 3 = 100.101.34 = 343400
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...=\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...\right):2\)
Ta có: (100 - 1) x 2 + 1 = 199
Vậy số hạng thứ 100 là: \(\frac{1}{199.201}\)
Tổng dãy trên là: \(\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{199.201}\right):2=\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{199}-\frac{1}{201}\right):2=\left(1-\frac{1}{201}\right):2=\frac{200}{201}:2=\frac{100}{201}\)
Ta gọi số thứ 100 là \(\frac{1}{x}\)
Ta có tổng :
\(\frac{1}{6}+\frac{1}{66}+\frac{1}{176}+\frac{1}{336}+...+\frac{1}{x}\)
= \(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{x}\)
Ta có công thức : \(U_n=U_1+\left(n-1\right).d\)
Vậy ta áp dụng : \(U_{100}=1+\left(100-1\right).5=496\)
=) Số thứ 100 là \(\frac{1}{496.\left(496+5\right)}=\frac{1}{496.501}\)
Ta có tổng của 100 số hạng đầu tiên là :
\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{496.501}\)
= \(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{496}-\frac{1}{501}\)
= \(1-\frac{1}{501}=\frac{500}{501}\)
Vậy tổng của 100 số hạng đầu tiên của dãy phân số trên là : \(\frac{500}{501}\)
Ta nhận thấy:
\(\frac{1}{6};\frac{1}{66};\frac{1}{176};\frac{1}{336}\) = \(\frac{1}{1\times6};\frac{1}{6\times11};\frac{1}{11\times16};\frac{1}{16\times21}\)
PS thứ 1 có TS thứ nhất của MS là: 1
PS thứ 2 có TS thứ nhất của MS là: 6
PS thứ 3 có TS thứ nhất của MS là: 11
PS thứ 4 có TS thứ nhất của MS là: 16
Vậy PS thứ 100 có TS thứ nhất của MS là: 1 + (100 - 1) x 5 = 496
Vậy TS thứ hai của MS là: 501
Ta có:
\(\frac{1}{1\times6}+\frac{1}{6\times11}+\frac{1}{11\times16}+....+\frac{1}{496\times501}\)
\(1-\frac{1}{501}=\frac{500}{501}\)
Chúc bạn học tốt !!!
a ,Số thứ 50 là : 5 x 50 = 250
b, Nếu số thứ 50 là 250 thì số thứ 100 là 500
Số các số hạng là : ( 500 - 5 ) : 5 + 1 = 100
Tổng dãy số đó là : ( 500 + 5 ) x 100 : 2 = 25250
số hạng thứ 50 là : [50-1]*5+5=250
số hạng thứ 100 là : [100-1]*5+5=500
tổng của 100 số là : [500+5] *100:2=2525
ok nhớ
a, Dãy trên có số số hạng là :
( 100 - 1 ) : 3 + 1 = 34
b, Tổng của dãy số là :
( 100 + 1 ) . 34 : 2 = 1717
Đáp số : a, 34 số số hạng
b, 1717
Câu : Cho dãy số 1 ; 4 ; 7 ; 10 ; ... ; 97 ; 100 .
a) Tính số các số hạng của dãy .
Ta lấy : (100-1):3+1=34 (số số hạng)
b) Tính tổng các số hạng của dãy .
Tổng là : (100+1)x34:2=1717
ta có: \(1=\frac{1}{1^2};\frac{1}{4}=\frac{1}{2^2};\frac{1}{9}=\frac{1}{3^2};\frac{1}{16}=\frac{1}{4^2};....\)
\(\Rightarrow\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)( tổng 100 số hạng đầu tiên)
\(\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=1+\left(1-\frac{1}{100}\right)=1+1-\frac{1}{100}=2-\frac{1}{100}< 2\)
\(\Rightarrow\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)
100 số hạng đầu tiên của dãy là 1;1/4;1/9;...;1/10000
A=1+1/2^2+1/3^2+...+1/100^2<1+1/1.2+1/2.3+...+1/99.100=1+1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100=2-1/100<2
Giúp mình với đi các cao nhân!