Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.
b) \(\frac{5+55+555+5555}{9+99+999+9999}\)
= \(\frac{5\left(1+11+111+1111\right)}{9\left(1+11+111+1111\right)}=\frac{5}{9}\)
c) \(39,2\cdot27+39,2\cdot43+78,4\cdot15\)
= \(39,2\cdot27+39,2\cdot43+39,2\cdot2\cdot15\)
= \(39,2\left(27+43+30\right)=39,2\cdot100=3920\)
d) \(\frac{4}{17}\cdot\frac{3}{11}+\frac{8}{11}\cdot\frac{4}{17}-\frac{4}{17}\)
= \(\frac{4}{17}\left(\frac{3}{11}+\frac{8}{11}-1\right)=\frac{4}{17}\cdot0=0\)
Bài 2.
a) \(\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+...+\frac{1}{57\cdot59}\)
= \(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{57}-\frac{1}{59}\)
= \(\frac{1}{5}-\frac{1}{59}=\frac{54}{295}\)
b) \(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)-\left(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\)
= \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}-\frac{1}{6}-\frac{1}{7}-\frac{1}{8}\)
= \(\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
c) \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)...\left(1-\frac{1}{2012}\right)\)
= \(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot...\cdot\frac{2011}{2012}=\frac{1}{2012}\)
1, A=\(\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{100}{99}\)
A= \(\frac{100}{2}\)
A=50
2, B=\(\frac{-1}{2}.\frac{-2}{3}....\frac{-98}{99}\)
B= \(\frac{1}{99}\)
\(A=\left(\frac{1}{2}+1\right)\cdot\left(\frac{1}{3}+1\right)\cdot\left(\frac{1}{4}+1\right)......\left(\frac{1}{99}+1\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}......\frac{99}{98}\cdot\frac{100}{99}\)
\(=\frac{100}{2}\)
\(=50\)
\(B=\left(\frac{1}{2}-1\right)\cdot\left(\frac{1}{3}-1\right)\cdot\left(\frac{1}{4}-1\right)......\left(\frac{1}{99}-1\right)\)
\(=\left(-\frac{1}{2}\right)\cdot\left(-\frac{2}{3}\right)\cdot\left(-\frac{3}{4}\right).....\left(-\frac{97}{98}\right)\cdot\left(-\frac{98}{99}\right)\)
\(=-\frac{1}{99}\)
a) \(=\frac{3}{2}.\frac{4}{3}....\frac{100}{99}=\frac{100}{2}=50\)
a) =3/2 . 4/3 . 5/4 ...100/99
=\(\frac{3.4.5...100}{2.3.4..99}\)
=\(\frac{100}{2}\)
b) =
\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)\cdot\cdot\left(1+\frac{1}{99}\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot\cdot\cdot\cdot\frac{100}{99}\)
\(=\frac{100}{2}=50\)
\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{99}\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{100}{99}\)
\(=\frac{3.4.5...100}{2.3.4...99}\)
\(=\frac{100}{2}\)
\(=50\)
\(P=\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right).....\left(1+\frac{1}{99}\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)
\(=\frac{100}{2}\)
=500
Ta có: \(1-\frac{1}{2}.\frac{2}{3}....\frac{98}{99}\)
= \(1-\frac{1}{99}\)
= \(\frac{98}{99}\)
P=\(1-\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).........\left(1-\frac{1}{99}\right)\)
P=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.........\frac{98}{99}=\frac{1}{99}\)