Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\dfrac{-1}{3}x^2y.2xy^3\)
\(=\left(\dfrac{-1}{3}\right).2x^2x.yy^3\)
\(=\dfrac{-2}{3}x^3y^4\)
Bậc của đơn thức là: 7
b) Ta có: \(\dfrac{1}{4}x^3y.\left(-2\right)x^3y^5\)
\(=\dfrac{1}{4}.\left(-2\right)x^3x^3.yy^5\)
\(=\left(\dfrac{-1}{2}\right)x^6y^6\)
Bậc của đơn thứ là: 12
\(\left(-\dfrac{1}{3}x^2y\right)\left(2xy^3\right)=\left(-\dfrac{1}{3}.2\right)\left(x^2.x\right)\left(y.y^3\right)=-\dfrac{2}{3}x^3y^4\)
Đơn thức tích có bậc 7.
b) \(\left(\dfrac{1}{4}x^3y\right)\left(-2x^3y^5\right)=-\dfrac{1}{2}x^6y^6\)
Đơn thức tích có bậc 12.
Bài làm:
a) Ta có: \(\left(-\frac{3}{8}x^2z\right).\left(\frac{2}{3}xy^2z^2\right).\left(\frac{4}{5}x^3y\right)\)
\(=-\frac{1}{5}x^6y^3z^3\)
b) Tại x=-1 ; y=-2 ; z=3 thì giá trị đơn thức là:
\(-\frac{1}{5}.\left(-1\right)^6.\left(-2\right)^3.3^3=\frac{216}{5}\)
a) Ta có : \(\left(\frac{-3}{8}x^2z\right)\cdot\frac{2}{3}xy^2z^2\cdot\frac{4}{5}x^3y=\left(-\frac{3}{8}\cdot\frac{2}{3}\cdot\frac{4}{5}\right)\cdot x^2xx^3\cdot y^2y\cdot zz^2=-\frac{1}{5}x^6y^3z^3\)
b) Với x = -1 ; y = -2 , z = 3
Thế vào ba đơn thức trên và đơn thức tích ta được :
\(\frac{-3}{8}x^2z=\frac{-3}{8}\left(-1\right)^2\cdot3=\frac{-3}{8}\cdot1\cdot3=\frac{-9}{8}\)
\(\frac{2}{3}xy^2z^2=\frac{2}{3}\cdot\left(-1\right)\cdot\left(-2\right)^2\cdot3^2=\frac{2}{3}\left(-1\right)\cdot4\cdot9=-24\)
\(\frac{4}{5}x^3y=\frac{4}{5}\left(-1\right)^3\cdot\left(-2\right)=\frac{4}{5}\left(-1\right)\left(-2\right)=\frac{8}{5}\)
\(-\frac{1}{5}x^6y^3z^3=-\frac{1}{5}\left(-1\right)^6\left(-2\right)^3\cdot3^3=-\frac{1}{5}\cdot1\cdot\left(-8\right)\cdot27=\frac{216}{5}\)
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)
Do đó: x-1=10; y-2=15; z-3=20
=>x=11; y=17; z=23
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
c: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}\)
Trường hợp 1: 2x-3y+5z=-1
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{-1}{70}\)
Do đó: x=-15/70=-3/14; y=-10/70=-1/7; z=-14/70=-1/5
Trường hợp 2: 2x-3y+5z=1
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{1}{70}\)
Do đó: x=15/70=3/14; y=1/7; z=1/5
mình ko bt làm bạn có thể k cho mình ko rồi mình kết bạn
mình kết bạn rồi đấy