Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a)\(\left(\dfrac{1}{2}\cdot\left(-2\right)\cdot\dfrac{-1}{3}\right)\cdot\left(x^2\cdot x^2\cdot x^2\right)\cdot\left(y^2\cdot y^3\right)\cdot z\)
\(\dfrac{1}{3}x^6y^5z\)
Deg=12
a: \(=\dfrac{1}{3}\cdot24\cdot4\cdot x^2\cdot xy\cdot xy=32x^4y^2\)
Phần biến là \(x^4;y^2\)
Bậc là 6
Hệ số là 32
b: \(=xy^2\cdot\left(-2\right)xy^3=-2x^2y^5\)
Phần biến là \(x^2;y^5\)
Bậc là 7
Hệ số là -2
c: \(=\dfrac{1}{5}x^2y^3z\cdot\dfrac{1}{8}x^3y^3z^3=\dfrac{1}{40}x^5y^6z^4\)
PHần biến là \(x^5;y^6;z^4\)
Bậc là 15
Hệ só là 1/40
d: \(=\dfrac{1}{3}\cdot ab\cdot xy\cdot a^2\cdot x^2y^4=\dfrac{1}{3}a^3b\cdot x^3y^5\)
Phần biến là \(x^3y^5\)
Hệ số là \(\dfrac{1}{3}a^3b\)
Bậc là 8
a) \(A=\left(\dfrac{1}{2^3}.3.\dfrac{13}{3}\right)\left(a^{3+2+1}\right)\left(x^{1+3}\right)\left(y^{1+2}\right)=\dfrac{13}{8}.a^6.x^4.y^3\)
\(B=\left[2^k.\left(-\dfrac{1}{2}\right)^2\right]\left(x^{2k+2}\right)\left(y^{3k+2.2}\right)\left(z^{4k+}\right)=2^{k-2}.x^{2\left(k+1\right)}.y^{3k+4}.z^{4k}\)
a) \(\left(2\frac{1}{3}x^2y^3z\right)^{10}.\left(\frac{-3}{7}x^5y^4z^2\right)^{10}.axyz\)
=\(\left(2\frac{1}{3}x^2y^3z.\frac{-3}{7}x^5y^4z^2\right)^{10}.axyz\)
=\(\left(\frac{7}{3}.\frac{-3}{7}x^2.x^5.y^3.y^4.z.z^2\right)^{10}.axyz\)
=\(\left(-1.x^7y^7z^3\right)^{10}.axyz\)
=\(x^{70}.y^{70}z^{30}.axyz\)
=\(a.x^{71}.y^{71}.z^{31}\)
PHS: a
PB: x71.y71.z31
Bậc: 173
a)\(4xy^2\) và \(\dfrac{3}{4}\left(x^2y\right)^3\)
= \(4xy^2\) . \(\dfrac{3}{4}\left(x^2y\right)^3\)
= \(4xy^2\) . \(\dfrac{3}{4}x^5y^3\)
= \(3x^6y^5\)
b)\(\dfrac{1}{6}x\left(2y^3\right)^2\) và \(-9x^5y\)
= \(\dfrac{1}{6}x\left(2y^3\right)^2\) . \(-9x^5y\)
= \(\dfrac{1}{6}x.2y^5\) . \(-9x^5y\)
= \(\dfrac{1}{3}xy^5\) . \(-9x^5y\)
= \(-3x^6y^6\)
Bổ sung nha
a) \(4xy^2.\dfrac{3}{4}\left(x^2y\right)^3=3x^6y^5\)
Bậc của đơn thức \(3x^6y^5=11\)
b)\(\dfrac{1}{6}x\left(2y^3\right)^2.\left(-9x^5y\right)\) = \(-3x^6y^6\)
Bậc của đơn thức \(-3x^6y^6=12\)