Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=2\cdot\dfrac{4}{3}\sqrt{3}-3\cdot\dfrac{1}{9}\sqrt{3}-6\cdot\dfrac{2}{15}\sqrt{3}\)
\(=\dfrac{8}{3}\sqrt{3}-\dfrac{1}{3}\sqrt{3}-\dfrac{4}{5}\sqrt{3}=\dfrac{23}{15}\sqrt{3}\)
b: \(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}+2+\sqrt{3}=4\)
c: \(=6\sqrt{3}-4\sqrt{3}+\dfrac{3}{5}\cdot5\sqrt{3}=2\sqrt{3}+3\sqrt{3}=5\sqrt{3}\)
\(a,2\sqrt{\dfrac{27}{4}}-\sqrt{\dfrac{48}{9}}-\dfrac{2}{5}.\sqrt{\dfrac{75}{16}}\)
\(\Leftrightarrow2.\dfrac{\sqrt{27}}{2}-\sqrt{\dfrac{48}{3}}-\dfrac{2}{5}.\dfrac{\sqrt{75}}{4}\)
\(\Leftrightarrow\sqrt{27}-\dfrac{4\sqrt{3}}{3}-\dfrac{1}{5}.\dfrac{5\sqrt{3}}{2}\)
\(\Leftrightarrow3\sqrt{3}-\dfrac{4\sqrt{3}}{3}-\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow\dfrac{7\sqrt{3}}{6}\)
\(b,\left(1+\dfrac{5-\sqrt{5}}{1-\sqrt{5}}\right).\left(\dfrac{5+\sqrt{5}}{1+\sqrt{5}}+1\right)\)
\(\Leftrightarrow\)\(\left[1+\dfrac{\left(5-\sqrt{5}\right)\left(1+\sqrt{5}\right)}{-4}\right].\left[\dfrac{\left(5+\sqrt{5}\right).\left(1-\sqrt{5}\right)}{-4}+1\right]\)
\(\Leftrightarrow\)\(\left(1+\dfrac{5+5\sqrt{5}-\sqrt{5}-5}{-4}\right).\left(\dfrac{5-5\sqrt{5}+\sqrt{5}-5}{-4}+1\right)\)
\(\Leftrightarrow\)\(\left(1+\dfrac{4\sqrt{5}}{-4}\right)\left(\dfrac{-4\sqrt{5}}{-4}+1\right)\)
\(\Leftrightarrow\left(1-\sqrt{5}\right)\left(\sqrt{5}+1\right)\)
\(\Leftrightarrow\left(1-\sqrt{5}\right).\left(1+\sqrt{5}\right)\)
<=> 1-5
=-4
a: \(=\sqrt{5}+2+\sqrt{3}+1-\sqrt{5}-\sqrt{3}=3\)
b: \(=\left(-\sqrt{5}-2+\sqrt{5}-\sqrt{3}\right)\cdot\left(2\sqrt{3}+3\right)\)
\(=-\sqrt{3}\left(2+\sqrt{3}\right)\cdot\left(2+\sqrt{3}\right)\)
\(=-\sqrt{3}\left(7+4\sqrt{3}\right)=-7\sqrt{3}-12\)
c: \(=\dfrac{\sqrt{2}+\sqrt{3}+2}{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}=\dfrac{1}{1+\sqrt{2}}=\sqrt{2}-1\)
\(1.A=\left(\dfrac{1}{3-\sqrt{5}}-\dfrac{1}{3+\sqrt{5}}\right).\dfrac{5-\sqrt{5}}{\sqrt{5}-1}=\left(\dfrac{3+\sqrt{5}}{9-5}-\dfrac{3-\sqrt{5}}{9-5}\right).\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}=\dfrac{2\sqrt{5}}{4}.\sqrt{5}=\dfrac{5}{2}\) \(2.B=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}=\dfrac{\sqrt{2}-1}{2-1}+\dfrac{\sqrt{3}-\sqrt{2}}{3-2}+...+\dfrac{\sqrt{100}-\sqrt{99}}{100-99}=\sqrt{100}-1\)
\(3.C=\sqrt[3]{7+5\sqrt{2}}-\sqrt[3]{5\sqrt{2}-7}=\sqrt[3]{\left(\sqrt{2}\right)^3+3.2.1+3.\sqrt{2}.1+1}-\sqrt[3]{\left(\sqrt{2}\right)^3-3.2.1+3.\sqrt{2}.1-1}=\sqrt[3]{\left(\sqrt{2}+1\right)^3}-\sqrt[3]{\left(\sqrt{2}-1\right)^3}=\sqrt{2}+1-\left(\sqrt{2}-1\right)=2\) \(4.Sai-đề\) ???
Sorry và cám ơn bạn.
4.\(\sqrt[3]{9+4\sqrt{5}}\) + \(\sqrt[3]{9-4\sqrt{5}}\)
a) \(\sqrt{\left(\sqrt{3}-3\right)^2}-\sqrt{16+6\sqrt{3}}=3-\sqrt{3}-\sqrt{\left(3+\sqrt{3}\right)^2+4}\)
b) \(\dfrac{3}{\sqrt{5}-\sqrt{2}}+\dfrac{2}{2+\sqrt{2}}+\dfrac{\sqrt{5}-5}{\sqrt{5}-1}=\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{5-2}+\dfrac{2\left(2-\sqrt{2}\right)}{4-2}-\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5-1}}=\sqrt{5}+\sqrt{2}+2-\sqrt{2}-\sqrt{5}=2\)
c) \(2+\sqrt{17-4\sqrt{9+4\sqrt{5}}}=2+\sqrt{17-4\left(\sqrt{5}+2\right)}=2+\sqrt{9-4\sqrt{5}}=2+\sqrt{5}-2=\sqrt{5}\)
d) \(\left(\sqrt{5-2\sqrt{6}}+\sqrt{2}\right)\cdot\dfrac{1}{\sqrt{3}}=\left(\sqrt{3}-\sqrt{2}+\sqrt{2}\right)\cdot\dfrac{1}{\sqrt{3}}=1\)
a. \(2\sqrt{16}+\sqrt{2}.\sqrt{0,02}-\dfrac{\sqrt{12,1}}{\sqrt{0,1}}=2.4+\sqrt{0,04}-\sqrt{\dfrac{12,1}{0,1}}=8+0,2-11=-2,8\)b. \(5\sqrt{20}-4\sqrt{45}+\dfrac{15}{\sqrt{5}}=10\sqrt{5}-12\sqrt{5}+3\sqrt{5}=\sqrt{5}\)
c. \(\left(\dfrac{\sqrt{6}-\sqrt{3}}{5\sqrt{2}-5}+\dfrac{\sqrt{5}}{5}\right):\dfrac{2}{\sqrt{5}-\sqrt{3}}=\left(\dfrac{\sqrt{3}\left(\sqrt{2}-1\right)}{5\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{5}}{5}\right).\dfrac{\sqrt{5}-\sqrt{3}}{2}=\dfrac{\sqrt{3}+\sqrt{5}}{5}.\dfrac{\sqrt{5}-\sqrt{3}}{2}=\dfrac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{5.2}=\dfrac{5-3}{10}=\dfrac{2}{10}=\dfrac{1}{5}\)d. \(\dfrac{\sqrt{6}-3}{\sqrt{3}-\sqrt{2}}-\dfrac{4}{\sqrt{3}+1}+3\sqrt{3}=\dfrac{-\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}-\dfrac{4}{\sqrt{3}+1}+3\sqrt{3}=3\sqrt{3}-\sqrt{3}-\dfrac{4}{\sqrt{3}+1}=\dfrac{\left(\sqrt{3}+1\right).2\sqrt{3}-4}{\sqrt{3}+1}=\dfrac{6+2\sqrt{3}-4}{\sqrt{3}+1}=\dfrac{2+2\sqrt{3}}{\sqrt{3}+1}=\dfrac{ 2\left(\sqrt{3}+1\right)}{\sqrt{3}+1}=2\)
\(\sqrt{1\dfrac{9}{16}.5\dfrac{4}{9}.0,01}=\sqrt{\dfrac{25}{16}.\dfrac{49}{9}.\dfrac{1}{100}}=\sqrt{\dfrac{25}{16}}.\sqrt{\dfrac{49}{9}}.\sqrt{\dfrac{1}{100}}=\dfrac{5}{4}.\dfrac{7}{3}.\dfrac{1}{10}=\dfrac{5.7.1}{4.3.10}=\dfrac{35}{120}=\dfrac{7}{24}\)
\(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+\sqrt{3}\right)=\dfrac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}-\sqrt{2}-\sqrt{3}=\sqrt{3}+2+\sqrt{2}-\sqrt{2}-\sqrt{3}=2\)