K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2016

ta có : 1/1.6+1/6.11+1/11.16+....+1/96.101

= 1/5.5/1.6+ 1/5.5/6.11+1/5.5/11.16+...+1/5.5/96.101

=1/5 . ( 5/1.6+5/6.11+5/11.16+...+5/96.101)

=1/5 . ( 1/1-1/6 +1/6-1/11+1/11-1/16+....+1/96-1/101)

=1/5 . (1/1-1/101)

=1/5 . 100/101

= 20/101

1 tháng 4 2016

5A=\( 1-{1\over 6}+{1\over 6}-{1\over 11}+...{1\over 96}-{1\over 101}\)

  =\(1- {1 \over 101}={100 \over 101}\)

suy ra A =\({20 \over 101}\)

7 tháng 4 2017

\(C=\frac{1}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{96}-\frac{1}{101}\right)\)

\(C=\frac{1}{5}\left(1-\frac{1}{101}\right)\)

\(C=\frac{1}{5}.\frac{100}{101}=\frac{20}{101}\)

7 tháng 4 2017

\(5C=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{96.101}\)

\(5C=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{96}-\frac{1}{101}\)

\(5C=1-\frac{1}{101}\)

\(C=\frac{100}{\frac{101}{5}}\)

12 tháng 8 2016

bạn ơi hình như đề sai ở chỗ cuối cùng kia kìa chỗ đó có phải : x . x ( 1 + 5 ) 

Đúng ko bạn ?????

12 tháng 8 2016

Sai đề

20 tháng 1 2017

a)

=\(\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^9.2^3.7^3}\)

\(=\frac{2^{12}\left(3^5-3^4\right)}{2^{12}\left(3^6+3^5\right)}-\frac{5^{10}\left(7^3-7^4\right)}{5^9.7^3\left(1+2^3\right)}\)

\(=\frac{3^5-3^4}{3^6+3^5}-\frac{5\left(7^3-7^4\right)}{7^3.3^2}\)

=\(\frac{3^4\left(3-1\right)}{^{ }3^4\left(9+3\right)}-\frac{5.7^3-5.7^4}{7^3.3^2}\)

=\(\frac{1}{6}-\frac{7^3.5\left(1-7\right)}{7^3.3^2}=\frac{1}{6}-\frac{30}{9}=-\frac{19}{6}\)

Vậy A=\(-\frac{19}{6}\)

20 tháng 1 2017

câu b lúc nã mk làm sai rui

dây mới đúng

=\(\frac{1}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{96}-\frac{1}{101}\right)\)

=\(\frac{1}{5}\left(1-\frac{1}{101}\right)=\frac{1}{5}.\frac{100}{101}=\frac{20}{101}\)

19 tháng 11 2017

Ta có: \(\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+...+\dfrac{5}{96.101}\) \(=1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{96}-\dfrac{1}{101}\) \(=1-\dfrac{1}{101}\) \(\dfrac{100}{101}\)

19 tháng 11 2017

\(\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+.....+\dfrac{5}{96.101}\)

\(=1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+......+\dfrac{1}{96}-\dfrac{1}{101}\)

\(=1-\dfrac{1}{101}\)

\(=\dfrac{101}{101}-\dfrac{1}{101}\)

\(=\dfrac{101-1}{101}\)

\(=\dfrac{100}{101}\)

Ta có: \(A=\frac{5^2}{1\cdot6}+\frac{5^2}{6\cdot11}+...+\frac{5^2}{26\cdot31}\)

\(=5\left(\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+...+\frac{5}{26\cdot31}\right)\)

\(=5\cdot\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)

\(=5\cdot\left(1-\frac{1}{31}\right)=5\cdot\frac{30}{31}=\frac{150}{31}>1\)

hay A>1(đpcm)

22 tháng 6 2015

\(A=\frac{10^2}{1\cdot6}+\frac{10^2}{6\cdot11}+...+\frac{10^2}{61\cdot66}=\left(\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+...+\frac{5}{61\cdot66}\right)\cdot20\)

\(=\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{61}-\frac{1}{66}\right)\cdot20\)

\(=\left[\left(1-\frac{1}{66}\right)+\left(\frac{1}{6}-\frac{1}{6}\right)+...+\left(\frac{1}{61}-\frac{1}{61}\right)\right]\cdot20\)

\(=\left[\left(\frac{66}{66}-\frac{1}{66}\right)+0+...+0\right]\cdot20=\frac{65}{66}\cdot20=\frac{65\cdot20}{66}=\frac{65\cdot10}{33}=\frac{650}{33}\)

22 tháng 6 2015

\(A=\frac{10^2}{1.6}+\frac{10^2}{6.11}+...+\frac{10^2}{61.66}\)

\(=10^2.\left(\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{61.66}\right)\)

\(=10^2.5.\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{61}-\frac{1}{66}\right)\)

\(=500.\left(1-\frac{1}{66}\right)\)

\(=500.\frac{65}{66}\)

\(=\frac{16250}{33}\)

10 tháng 9 2016

a)

\(\Rightarrow A=\frac{\frac{1}{11}-\frac{1}{13}-\frac{1}{17}}{5\left(\frac{1}{11}-\frac{1}{13}-\frac{1}{17}\right)}+\frac{2\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}{7\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}\)

\(\Rightarrow A=\frac{1}{5}+\frac{2}{7}\)

\(\Rightarrow A=\frac{17}{35}\)

b)

\(\Rightarrow B=5\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+....+\frac{1}{56}-\frac{1}{61}\right)\)

\(\Rightarrow B=5\left(\frac{1}{11}-\frac{1}{61}\right)\)

\(\Rightarrow B=5.\frac{50}{671}=\frac{250}{671}\)

c)

\(\Rightarrow C=1-\left(\frac{1}{1.3}+\frac{1}{2.3}+\frac{1}{2.5}+....+\frac{1}{49.25}\right)\)

\(\Rightarrow C=1-2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{49.50}\right)\)

\(\Rightarrow C=1-2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\right)\)

\(\Rightarrow C=1-1-\frac{1}{25}\)

\(\Rightarrow C=\frac{1}{25}\)

 

13 tháng 1 2016

C=-49/50

=>50C=-49

13 tháng 1 2016

\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{100}+\frac{1}{100}-\frac{1}{99}+\frac{1}{99}-\frac{1}{98}+\frac{1}{98}-\frac{1}{97}-...+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-1\)

\(=\frac{1}{100}+\frac{1}{100}-1\)

\(=-\frac{49}{50}\)

 

\(\Rightarrow50C=50.\frac{-49}{50}=-49\)