Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1002-992+982-972+962...+22-1
=(100-99)x(100+99)+(98-97)x(98+97)+...+(2-1)x(2+1)
=100+99+98+98+...+2+1
=5050
chọn đúng cho mình điểm nha!
1002-992+982-972+962...+22-1
=(100-99)x(100+99)+(98-97)x(98+97)+...+(2-1)x(2+1)
=100+99+98+98+...+2+1
=5050
a)
\(A=\left(x-6\right)^2+\left(x+6\right)^2\)
\(A=\left(x^2-2x6+6^2\right)+\left(x^2+2x6+6^2\right)\)
\(A=x^2-2x6+6^2+x^2+2x6+6^2\)
\(A=\left(x^2+x^2\right)+\left(-2x6+2x6\right)+\left(6^2+6^2\right)\)
\(A=2x^2+72\)
b)
\(B=\left(x^2+y^2+3^2+2xy+2x3+2y3\right)-\left(x^2+y^2+9\right)\)
\(B=x^2+y^2+3^3+2xy+2x3+2y3-x^2-y^2-9\)
\(B=\left(x^2-x^2\right)+\left(y^2-y^2\right)+\left(3^2-9\right)+2xy+2x3+2y3\)
\(B=2xy+2x3+2y3\)
Mình phải đi ngủ rồi, có gì mai làm tiếp nha
c/
C = (5x - 2) . (5x + 2) - (5x - 1)2
C = [(5x)2 - 22] - [(5x)2 - 2 . 5x1 + 12]
C = (5x)2 - 22 - (5x)2 + 2 . 5x1 - 12
C = [(5x)2 - (5x)2] + (-22 + 2 - 12) + 5x1
C = 5 + 5x1.
\(P=100^2-99^2+98^2-97^2+96^2-95^2+...+2^2-1^2\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=100+99+98+97+...+2+1\)
\(=\frac{\left(100+1\right)\cdot100}{2}=5050\)
\(100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(100-99\right).\left(100+99\right)+\left(98-97\right).\left(98+97\right)+...+\left(2-1\right).\left(2+1\right)\)
\(=1.\left(1+2\right)+1.\left(3+4\right)+...+1.\left(99+100\right)\)
\(=1.\left(1+2+3+...+99+100\right)\)
\(=\frac{\left(100+1\right).100}{2}\)
\(=101.50\)
\(=5050\)
Tham khảo nhé~
Ta có:
A=(100^2 -99^2)+(98^2 - 97^2)+(96^2 - 95^2)+.........+(2^2 - 1)
=(100-99)(100+99) + (98-97)(98+97) + (96-95)(96+95)+........+(2-1)(2+1)
=100+99+98+97+......+2+1=5050
Ở đây mình nhóm các hạng tử rồi AD hằng đẳng thức A^2 - B^2 = (A-B)(A+B)
\(a)\) \(E=\frac{2016^3-1}{2016^2+2017}\)
\(E=\frac{\left(2016-1\right)\left(2016^2+2016.1+1^2\right)}{2016^2+2017}\)
\(E=\frac{2015\left(2016^2+2017\right)}{2016^2+2017}\)
\(E=2015\)
Chúc bạn học tốt ~
a: Từ 1 đến 100 sẽ có:
\(\dfrac{100-1}{1}+1=100\left(số\right)\)
Ta lại có: 100-99=98-97=...=2-1=1
=>Sẽ có \(\dfrac{100}{2}=50\) cặp số có tổng bằng 1 trong dãy số A
=>\(A=50\cdot1=50\)
b: Sửa đề: \(B=99-97+95-93+...+3-1\)
Số số lẻ trong dãy số từ 1 đến 99 là:
\(\dfrac{99-1}{2}+1=\dfrac{98}{2}+1=50\left(số\right)\)
Ta có: 99-97=95-93=...=3-1=2
=>Sẽ có \(\dfrac{50}{2}=25\) cặp số có tổng bằng 2 trong dãy số B
=>\(B=25\cdot2=50\)
Giải:
\(100^2-99^2+98^2-97^2+96^2-95^2+...+2^2-1^2\)
\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+\left(96^2-95^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+\left(96-95\right)\left(96+95\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=\left(100+99\right)+\left(98+97\right)+\left(96+95\right)+...+\left(2+1\right)\)
\(=100+99+98+97+96+95+...+2+1\)
\(=\dfrac{\left(100-1+1\right).\left(100+1\right)}{2}=5050\)
Vậy ...
Chúc bạn học tốt!
Ta có :
\(100^2-99^2+98^2-97^2+96^2-95^2+......+2^2-1^2\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+\left(96-95\right)\left(96+95\right)+.....+\left(2-1\right)\left(2+1\right)\)
\(=100+99+98+97+96+95+......+2+1\)
\(=\dfrac{100.\left(100+1\right)}{2}=5050\)