K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2021

Ta có \(\widehat{BDC}=90^{\text{o}}\)

mà \(\widehat{ABD}+\widehat{BDC}=180^{\text{o}}\)

=> AB//CD 

=> \(\widehat{BAC}=\widehat{ACM}=50^{\text{o}}\)

lại có : \(\widehat{ACM}+\widehat{MCE}=180^{\text{o}}\)

=> \(\widehat{MCE}=180^{\text{o}}-\widehat{ACM}=180^{\text{o}}-50^{\text{o}}=130^{\text{o}}\)

mà \(\widehat{CMN}+\widehat{MNE}=180^{\text{o}}\)

=> MC//NE 

=> \(\widehat{MCE}+\widehat{CEN}=180^{\text{o}}\)

=> \(\widehat{CEN}=180^{\text{o}}-\widehat{MCE}=180^{\text{o}}-130^{\text{o}}=50^{\text{O}}\)

21 tháng 9 2017

Cho mk xin cái đề bài

21 tháng 9 2017

undefined

27 tháng 5 2017

Ta có : AB=AC

=> \(\Delta ABC\) là tam giác vuông cân tại A ( vì tam giác có 2 cạnh bằng nhau )

=> \(\widehat{ABC}=A\widehat{CB}\) ( hai cạnh đáy của tam giác cân )

=> \(\widehat{ABC}=A\widehat{CB}=45^0\)

=> \(\widehat{CBD}=\widehat{A}+\widehat{BCA}=135^0\) ( góc ngoài của tam giác )

Ta lại có:

BD=BC

=> \(\Delta BCD\) cân tại B ( vì tam giác có 2 cạnh bằng nhau )

=> \(\widehat{BDC}=\widehat{BCD}\) ( hai cạnh đáy của tam giác cân )

=> \(\widehat{BDC}=\widehat{BCD}=\dfrac{\left(180^0-135^0\right)}{2}=\dfrac{45^0}{2}=22,5^0\)

\(\widehat{ACD}=\widehat{BCA}+\widehat{BCD}\)

=> \(\widehat{ACD}=45^0+22,5^0=67,5^0\)

Vậy trong \(\Delta ACD\) có :

\(\left\{{}\begin{matrix}\widehat{A}=90^0\\\widehat{ADC}=22,5^0\\\widehat{ACD}=67,5^0\end{matrix}\right.\)

21 tháng 9 2017

còn cách nào khác mà không cần kẻ tỉa không ?

16 tháng 7 2017

a, Ta có:

AB \(\perp\) a

AB \(\perp\) b

\(\Rightarrow\)a // b

b, Ta có: a // b( câu a)

hai góc ADC và DCB là hai góc trong cùng phía

\(\Rightarrow\)DCB = 180\(^0\) - ADC(tính chất hai đường thẳng song song)

\(\Rightarrow\) DCB = 180\(^0\)-120\(^0\) = 60\(^0\)

20 tháng 4 2017

Giải bài 46 trang 98 Toán 7 Tập 1 | Giải bài tập Toán 7

19 tháng 4 2017

a) Hai đường thẳng a và b cùng vuông góc với đường thẳng MN nên a // b.

b) Ta có góc MPQ = góc Q1 = 50o (so le trong vì a // b)

mà góc Q1 + Q2 = 180o (kề bù)

=> Q2 = 180o - 50o = 130o

Vậy góc NQP = 130o.

19 tháng 4 2017

Kí hiệu như hình vẽ.

Ta có tứ giác ISTM nội tiếp đường tròn nên:

ˆS1S1^ + ˆMM^ = 180o

ˆM1M1^ + ˆM3M3^ = 180o (kề bù)

nên suy ra ˆS1S1^ = ˆM3M3^ (1)

Tương tự từ các tứ giác nội tiếp IMPN và INQS ta được

ˆM3M3^ = ˆN4N4^ (2)

ˆN4N4^ = ˆR2R2^ (3)

Từ (1), (2), (3) suy ra

Do đó QR // ST