Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\widehat{BDC}=90^{\text{o}}\)
mà \(\widehat{ABD}+\widehat{BDC}=180^{\text{o}}\)
=> AB//CD
=> \(\widehat{BAC}=\widehat{ACM}=50^{\text{o}}\)
lại có : \(\widehat{ACM}+\widehat{MCE}=180^{\text{o}}\)
=> \(\widehat{MCE}=180^{\text{o}}-\widehat{ACM}=180^{\text{o}}-50^{\text{o}}=130^{\text{o}}\)
mà \(\widehat{CMN}+\widehat{MNE}=180^{\text{o}}\)
=> MC//NE
=> \(\widehat{MCE}+\widehat{CEN}=180^{\text{o}}\)
=> \(\widehat{CEN}=180^{\text{o}}-\widehat{MCE}=180^{\text{o}}-130^{\text{o}}=50^{\text{O}}\)
Ta có : AB=AC
=> \(\Delta ABC\) là tam giác vuông cân tại A ( vì tam giác có 2 cạnh bằng nhau )
=> \(\widehat{ABC}=A\widehat{CB}\) ( hai cạnh đáy của tam giác cân )
=> \(\widehat{ABC}=A\widehat{CB}=45^0\)
=> \(\widehat{CBD}=\widehat{A}+\widehat{BCA}=135^0\) ( góc ngoài của tam giác )
Ta lại có:
BD=BC
=> \(\Delta BCD\) cân tại B ( vì tam giác có 2 cạnh bằng nhau )
=> \(\widehat{BDC}=\widehat{BCD}\) ( hai cạnh đáy của tam giác cân )
=> \(\widehat{BDC}=\widehat{BCD}=\dfrac{\left(180^0-135^0\right)}{2}=\dfrac{45^0}{2}=22,5^0\)
Mà \(\widehat{ACD}=\widehat{BCA}+\widehat{BCD}\)
=> \(\widehat{ACD}=45^0+22,5^0=67,5^0\)
Vậy trong \(\Delta ACD\) có :
\(\left\{{}\begin{matrix}\widehat{A}=90^0\\\widehat{ADC}=22,5^0\\\widehat{ACD}=67,5^0\end{matrix}\right.\)
a, Ta có:
AB \(\perp\) a
AB \(\perp\) b
\(\Rightarrow\)a // b
b, Ta có: a // b( câu a)
hai góc ADC và DCB là hai góc trong cùng phía
\(\Rightarrow\)DCB = 180\(^0\) - ADC(tính chất hai đường thẳng song song)
\(\Rightarrow\) DCB = 180\(^0\)-120\(^0\) = 60\(^0\)
a) Hai đường thẳng a và b cùng vuông góc với đường thẳng MN nên a // b.
b) Ta có góc MPQ = góc Q1 = 50o (so le trong vì a // b)
mà góc Q1 + Q2 = 180o (kề bù)
=> Q2 = 180o - 50o = 130o
Vậy góc NQP = 130o.
Kí hiệu như hình vẽ.
Ta có tứ giác ISTM nội tiếp đường tròn nên:
ˆS1S1^ + ˆMM^ = 180o
Mà ˆM1M1^ + ˆM3M3^ = 180o (kề bù)
nên suy ra ˆS1S1^ = ˆM3M3^ (1)
Tương tự từ các tứ giác nội tiếp IMPN và INQS ta được
ˆM3M3^ = ˆN4N4^ (2)
ˆN4N4^ = ˆR2R2^ (3)
Từ (1), (2), (3) suy ra
Do đó QR // ST