K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2017

1:Hỏi đáp Toán

4 tháng 6 2018

1/ A= 1.(100-1)+2(100-2)+3.(100-3)+...+49.(100-51)+50.(100-50)

      = 1.100-1+2.100 - 2.2 + 3.100 -3.3 + ...+49.100 - 49.51 + 50.100 - 50.50

      = 100( 1 + 2 + 3 + ...+ 50) - ( 1 + 2+ 32 + ... + 502 )

      = 127500- 42925

      = 84575

4 tháng 6 2018

2/ A= 1.3 + 5.7 + 9.11+ 13.15 + 17.19 + ... + 97. 101

= 1.3 + 5(6 + 1) +9( 6+ 5) + 13(6+9) + 17(6+13) + ... + 97(95+6)

= 3 + 5.6 + 1.5 + 9.6 + 5.9 + 13.6 + 9.13 + 17.6 + 13.17 + ... + 95.97 + 97.6

= 3 + ( 1.5 + 5.9 + 9.13 + 13.17 + ...+ 95.97) + 6( 5 + 9 + 13 + 17 + ... + 97)

= ...

=\(\frac{509447}{6}\)

2 tháng 4 2016

a, 3A=1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3

3A=1.2.3+2.3.(4-1)+3.4.(5-2)+...+98.99.(100-97)+99.100.(101-98)

3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+98.99.100-97.98.99+99.100.101-98.99.100

3A=99.100.101=999900

A=333300

6 tháng 12 2016

b)Ta chứng minh công thức \(1^2+2^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\) (*)

Với n=1 (*) đúng

Giả sử (*) đúng với n=k, khi đó ta có

\(1^2+2^2+...+k^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}\) (1)

Ta chứng minh (1) đúng với n=k+1, từ (1) suy ra:

\(1^2+2^2+...+k^2+\left(k+1\right)^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)

\(=\left(k+1\right)\left(\frac{k\left(2k+1\right)}{6}+k+1\right)=\left(k+1\right)\frac{2k^2+7k+6}{6}\)

\(=\frac{\left(k+1\right)\left(2k^2+4k+3k+6\right)}{6}=\frac{\left(k+1\right)\left[2k\left(k+2\right)+3\left(k+2\right)\right]}{6}=\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)

Theo nguyên lí quy nạp ta có ĐPCM

Áp dụng vào bài toán ta có:

\(B=\frac{98\left(98+1\right)\left(2\cdot98+1\right)}{6}=318549\)

 

6 tháng 12 2016

a)\(A=1\cdot2+2\cdot3+...+98\cdot99\)

\(3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+98\cdot99\left(100-97\right)\)

\(3A=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+98\cdot99\cdot100-97\cdot98\cdot99\)

\(3A=98\cdot99\cdot100=\frac{98\cdot99\cdot100}{3}=323400\)

 

21 tháng 10 2018

\(S_n=1.1!+2.2!+3.3!+...+n.n!\)

\(\text{Ta có:}\) \(1.1!=2!-1!\)

\(2.2!=3!-2!\)

\(3.3!=4!-3!\)

.......

\(n.n!=\left(n+1\right)!-n!\)

Cộng vế với vế ta đc: 

\(S_n=1.1!+2.2!+3.3!+...+n.n!=2!-1!+3!-2!+4!-3!+...+\left(n+1\right)!-n!\)

\(=\left(n+1\right)!-1!=\left(n+1\right)!-1\)

21 tháng 10 2018

thank bn