Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
lưu ý:
các bạn không dược đăng những câu hỏi linh tinh trên diễn đàn bạn có thể bị online math trừ điểm hoặc bị khóa nick vĩnh viễn
Ta thấy dãy số trên là dãy số cách đều nên sẽ có x số hạng
Tổng của dãy trên là: (x+1).x:2=5050
(x+1).x=5050.2=10100
Mà x và x+1 là 2 số tự nhiên liên tiếp nên (x+1).x=101.100
=> x=100 ( vì x< x+1)
Vậy x=100
_HT_
chúc bn thi anh thật tốt và đạt đc điểm tối đa
bạn hãy cố gắng ôn bài thật kỹ để vào thi sẽ hiểu đề và làm đc hết nhé
Đặt S= 1.2 + 2.3 + 3.4 + ...+ 99.100
3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3S = 99.100.101 3S = 3.33.100.101
S=33.100.101= 333300
Bạn rút gọn chéo đi 2 với 2 ,3 với 3 cứ như thế còn mỗi 1/100. k nhé
3N = 1.2.3+2.3(4-1)+3.4.(5-2)+.+99.100.(101-98)
3N = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.+99.100.101-98.99.100
3N = 99.100.101
3N=33.100.101=333300
b)
tổng này có 99-10+1=90 (số hạng):
10,11 + 11,12 + 12,13 +............+ 98,99 + 99,100 =
10,100 + 11,11 + 12,12 + .......... + 98,98 + 99,99 =
(10,10 + 99,99) x 90 : 2 = 4954,05
c)
R=1.(2-1)+2.(3-1)+.....+100.(101-1)
=1.2-1.1+2.3-1.2+......+100.101-1.100
=(1.2+2.3+.....+99.100+100.101)-(1+2+3+...+100)
=[1.2.3+2.3.(4-1)+........100.101.(102-99)]:3+[(100+1).100:2]
(tổng trên chia cho 3 nên cuối cùng chia 3)
=(1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.....100.101.102-99.100.101):3+5050
=(100.101.102) :3 +5050
=348450
d)=1.100+2.(100-1)+.....+100.(100-99)
=1.100+2.100-1.2+3.100-2.3+........+100.100-99.100
=100.(1+2+3+.......+100)-(1.2+2.3+3.4+....+99.100)
=100.\(\frac{101.100}{2}-\frac{99.100.101}{3}\) =505000-333300=171700
p/s mỏi tay, bấm mình nhé
Đặt A= 1.2+2.3 +.......+99.100
3A= 1.2.3+2.3.4+3.4.3 +......+ 99.100.3
3A= 1.2. (3 - 0) + 2.3.(4 - 1) +3.4. (5 - 2)....... . 99.100. (101 - 98)
3A = (1.2.3 + 2.3.4 + 3.4.5 +...... + 99.100.101) - (0.1.2 + 1.2.3 + 2.3.4 +.......+ 98.99.100)
3A = 99.100.101 - 0.1.2
3A = 999900 - 0
3A= 999900
A= 999900 : 3
A = 333300
A=1.2+2.3+3.4+…+99.100
3A = 1.2.3 + 2.3.3 + ... + 99.100.3
3A = 1.2.3 + 2.3.(4-1) + ... + 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + ... + 99.100.101 - 98.99.100
3A = 99.100.101
=> A = \(\frac{99.100.101}{3}\)= 333 300
3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + n(n +1)3
= 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ...+ n(n + 1)[(n + 2) - (n -1)]
= 1.2.3 + 2.3.4 - 2.3 + 3.4.5 - 2.3.4 + ... + n(n + 1)(n + 2) - n(n + 1)(n - 1)
= n(n + 1)(n + 2)
=> S N(N+1)(n+2)/3
mk nhanh nhat nhat ban !!!
ta thấy mỗi hạng tử của tổng trên là tích của hai số tự nhiên liên tiếp , khi đó:
gọi a1=1.2=>3a1=1.2.3=>3a1=1.2.3-0.1.2
a2=2.3=>3a2=2.3.3=>3a2=2.3.4-1.2.3
a3=3.4=>3a3=3.3.4=>3a3=3.4.5-2.3.4
an-1=(n-1)n=>3an-1=3(n-1)n=>3an-1=(n-1)n(n+1)-(n-2)(n-1)n
an=n(n+1)=>3an=3n(n+1)=>3an=n(n+1)(n+2)-(n-1)n(n+1)
cộng các vế đẳng thức trên ta có:
3a1+3a2+...+3an-1+3an=1.2.3-0.1.2+2.3.4-1.2.3+...+(n-1)n(n+1)-(n-2)(n-1)n+n(n+1)(n+2)-(n-1)n(n+1) =>3(a1+a2+...+an-1+an)=n(n+1)(n+2)
mà A=a1+a2+...+an-1+an nên
\(A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)