\(\sqrt{2+\sqrt{3}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2021

Đặt A= \(\sqrt{2+\sqrt{3}}\)

\(\sqrt{2}A=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

\(\Rightarrow A=\frac{\sqrt{3}+1}{\sqrt{2}}=\frac{\sqrt{6}+\sqrt{2}}{2}\)

18 tháng 6 2019

\(\left(3-\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3+\sqrt{5}}\)

\(=\left(3-\sqrt{5}\right).\sqrt{2}\left(\sqrt{5}-1\right)\sqrt{3+\sqrt{5}}\)

\(=\left(3-\sqrt{5}\right)\left(\sqrt{5}-1\right)\sqrt{6+2\sqrt{5}}\)

\(=\left(3-\sqrt{5}\right)\left(\sqrt{5}-1\right)\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(=\left(3-\sqrt{5}\right)\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)\)

\(=\left(3-\sqrt{5}\right)\left[\left(\sqrt{5}\right)^2-1\right]\)

\(=\left(3-\sqrt{5}\right)\left(5-1\right)\)

\(=4\left(3-\sqrt{5}\right)\)

\(=12-4\sqrt{5}\)

24 tháng 7 2018

\(\left(2\sqrt{2}-3\sqrt{2}+\sqrt{10}\right)\left(\sqrt{2}-3\sqrt{0.4}\right)\)

\(=\left(\sqrt{10}-\sqrt{2}\right)\left(\sqrt{2}-3\sqrt{0.4}\right)\)

\(=2\sqrt{5}-6-2+\frac{6\sqrt{5}}{5}\)

\(=\frac{16\sqrt{5}-40}{5}\)

25 tháng 7 2018

\(=\left(2\sqrt{2}-3\sqrt{2}+\sqrt{10}\right)\left(\sqrt{2}-3\sqrt{0.4}\right)\)

\(=\left(\sqrt{10}-\sqrt{2}\right)\left(\sqrt{2}-3\sqrt{0.4}\right)\)

\(=2\sqrt{5}-6-2+\frac{6\sqrt{5}}{5}=\frac{16\sqrt{5}-40}{5}\)

13 tháng 6 2017

      \(\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}\) + \(\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)

<=> \(\frac{\left(\sqrt{2-\sqrt{3}}\right)^2+\left(\sqrt{2+\sqrt{3}}\right)^2}{\left(\sqrt{2+\sqrt{3}}\right)\left(\sqrt{2-\sqrt{3}}\right)}\)

<=>\(\frac{2-\sqrt{3}+2-\sqrt{3}}{\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}\)

<=>\(\frac{4}{\sqrt{4-3}}\)

<=>  4

mình năm nay lên lớp 9 nên có chỗ nào sai xót thì bạn sửa lại nha k mình nhé ^^

18 tháng 7 2019

\(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)

\(=\sqrt{\frac{6-2\sqrt{5}}{2}}+\sqrt{\frac{6+2\sqrt{5}}{2}}\)

\(=\sqrt{\frac{5-2\sqrt{5}+1}{2}}+\sqrt{\frac{5+2\sqrt{5}+1}{2}}\)

\(=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{2}}+\frac{\sqrt{\left(\sqrt{5}+1\right)^2}}{\sqrt{2}}\)

\(=\frac{\sqrt{5}-1}{\sqrt{2}}+\frac{\sqrt{5}+1}{\sqrt{2}}\)

\(=\frac{\sqrt{5}-1+\sqrt{5}+1}{\sqrt{2}}=\frac{2\sqrt{5}}{\sqrt{2}}=\frac{\sqrt{2}.\sqrt{2}.\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)

3 tháng 8 2016

~~~~~a)~~~~~

           \(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{2}}\right)^2}-\sqrt{\left(\sqrt{\frac{3}{2}}-\sqrt{\frac{1}{2}}\right)^2}\)

\(=\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{2}}-\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{2}}\)

\(=2.\sqrt{\frac{1}{2}}=\sqrt{2}\)

*****b)*****

(Hình như đề có cái gì đó sai sai hả bạn?)

~~~~~c)~~~~~

     \(\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}-2\right)\sqrt{\sqrt{3}+2}\)

\(=\left(3\sqrt{2}-2\sqrt{6}+\sqrt{6}-2\sqrt{2}\right)\sqrt{\left(\sqrt{\frac{1}{2}}+\sqrt{\frac{3}{2}}\right)^2}\)

\(=\left(\sqrt{2}-\sqrt{6}\right).\left(\sqrt{\frac{1}{2}}+\sqrt{\frac{3}{2}}\right)\)

\(=1+\sqrt{3}-\sqrt{3}-3\)

\(=-2\)

*****d)*****

     \(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)

\(=\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}-\sqrt{\left(2\sqrt{2}+3\sqrt{5}\right)^2}\)

\(=2\sqrt{2}-\sqrt{5}-2\sqrt{2}-3\sqrt{5}\)

\(=-4\sqrt{5}\)

(Chúc bạn học tốt và tíck cho mìk vs nhé ~~~~~bạn xem lại câu b hộ mình luôn nha~~~~~!)

12 tháng 8 2020

\(A=\sqrt{2}\left(\sqrt{3}+1\right)\left(\sqrt{3}-2\right)\sqrt{\sqrt{3}+2}\)

=>   \(A=\left(\sqrt{3}+1\right)\left(\sqrt{3}-2\right)\sqrt{4+2\sqrt{3}}\)

=>   \(A=\left(\sqrt{3}+1\right)\left(\sqrt{3}-2\right)\sqrt{\left(\sqrt{3}+1\right)^2}\)

=>   \(A=\left(\sqrt{3}+1\right)^2\left(\sqrt{3}-2\right)\)

=>   \(A=\left(4+2\sqrt{3}\right)\left(\sqrt{3}-2\right)\)

=>   \(A=4\sqrt{3}-8+6-4\sqrt{3}\)

=>   \(A=-8+6=-2\)

VẬY \(A=-2\)

12 tháng 8 2020

\(B=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right).\sqrt{2}.\sqrt{4-\sqrt{15}}\)

=>   \(B=\sqrt{8-2\sqrt{15}}\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\)

=> \(B=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\left(\sqrt{5}-\sqrt{3}\right)\left(4+\sqrt{15}\right)\)

=>  \(B=\left(\sqrt{5}-\sqrt{3}\right)^2\left(4+\sqrt{15}\right)\)

=>   \(B=\left(8-2\sqrt{15}\right)\left(4+\sqrt{15}\right)\)

=>   \(B=32+8\sqrt{15}-8\sqrt{15}-30\)

=>   \(B=2\)

VẬY    \(B=2\)

6 tháng 8 2020

\(\frac{4}{\sqrt{3}+1}-\frac{5}{\sqrt{3}-2}+\frac{6}{\sqrt{3}-3}\)

\(=\frac{4\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}-\frac{5\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}+\frac{6\left(\sqrt{3}+3\right)}{\left(\sqrt{3}+3\right)\left(\sqrt{3}-3\right)}\)

\(=\frac{4\sqrt{3}-4}{2}-\frac{5\sqrt{3}+10}{-1}+\frac{6\sqrt{3}+18}{3-9}\)

\(=2\sqrt{3}-2+5\sqrt{3}+10-\sqrt{3}-3\)

\(=6\sqrt{3}+5\)

8 tháng 9 2017

= 3 - 2\(\sqrt{2}\)+ 3 + 2\(\sqrt{2}\)= 3 + 3 = 6

8 tháng 9 2017

\(\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(3+2\sqrt{2}\right)^2}=\left|3-2\sqrt{2}\right|+\left|3+2\sqrt{2}\right|=3-2\sqrt{2}+3+2\sqrt{2}=6\)