Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,=\(\frac{1}{2}\)
b,-80000
c,\(\frac{1}{16}\)
d,\(1,271734748x10^{29}\)
a) (0.25)^3*32
= (0.5)^5*0.5*2^5
=1^5*0.5
=1*0.5
=0.5
b)(-0.125)^3*80^4
=(-0.125)^3*80^3*80
=(-0.125*80)^3*80
=(-10)^3
=-1000*80
=-80000
c) 8^2*4^5/2^20
=(23)2*(22)5*2^20
=2^6*2^10*2^20
=2^36
d)81^11*3^17/27^10*9^15
=((34)11*3^17)/(33)10*(32)15
=(3^44*3^17)/(3^30*3^30)
=3^61/3^60
=3
Bài b) dòng thứ 3 từ dưới đếm lên, phải là, (-10)^3*80 nha, gấp quá mình ghi nhầm ;)
a, \(4^3.5^3=\left(4.5\right)^3=20^3=8000\)
b, \(6^3.5^3=\left(6.5\right)^3=30^3=27000\)
c, \(8^2.5^2=\left(8.5\right)^2=40^2=1600\)
d, \(125^3.8^3=\left(125.8\right)^3=1000^3\)
e, \(5^2.6^2.3^2=\left(5.6.3\right)^2=90^2\)
Câu 1 :
\(\text{a) }B=\dfrac{4^6\cdot9^5+6^9\cdot120}{8^4\cdot3^{12}-6^{11}}\\ B=\dfrac{\left(2^2\right)^6\cdot\left(3^2\right)^5+\left(2\cdot3\right)^9\cdot\left(2^3\cdot3\cdot5\right)}{\left(2^3\right)^4\cdot3^{12}-6^{11}}\\ B=\dfrac{2^{12}\cdot3^{10}+2^9\cdot3^9\cdot2^3\cdot3\cdot5}{2^{12}\cdot3^{12}-\left(2\cdot3\right)^{11}}\\ B=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\\ B=\dfrac{2^{12}\cdot3^{10}\left(1+5\right)}{2^{11}\cdot3^{11}\left(6-1\right)}\\ B=\dfrac{2\cdot6}{3\cdot5}\\ B=\dfrac{4}{5}\\ \)
\(\text{b) }C=\dfrac{5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}\\ C=\dfrac{5\cdot\left(2^2\right)^{15}\cdot\left(3^2\right)^9-2^2\cdot3^{20}\cdot\left(2^3\right)^9}{5\cdot2^9\cdot\left(2\cdot3\right)^{19}-7\cdot2^{29}\cdot\left(3^3\right)^6}\\ C=\dfrac{5\cdot2^{30}\cdot3^{18}-2^2\cdot3^{20}\cdot2^{27}}{5\cdot2^9\cdot2^{19}\cdot3^{19}-7\cdot2^{29}\cdot3^{18}}\\ C=\dfrac{5\cdot2^{30}\cdot3^{18}-2^{29}\cdot3^{20}}{5\cdot2^{28}\cdot3^{19}-7\cdot2^{29}\cdot3^{18}}\\ C=\dfrac{2^{29}\cdot3^{18}\left(10-9\right)}{2^{28}\cdot3^{18}\left(15-14\right)}\\ C=\dfrac{2^{29}\cdot3^{18}}{2^{28}\cdot3^{18}}\\ C=2\\ \)
\(\text{c) }D=\dfrac{49^{24}\cdot125^{10}\cdot2^8-5^{30}\cdot7^{49}\cdot4^5}{5^{29}\cdot16^2\cdot7^{48}}\\ D=\dfrac{\left(7^2\right)^{24}\cdot\left(5^3\right)^{10}\cdot2^8-5^{30}\cdot7^{49}\cdot\left(2^2\right)^5}{5^{29}\cdot\left(2^4\right)^2\cdot7^{48}}\\ D=\dfrac{7^{48}\cdot5^{30}\cdot2^8-5^{30}\cdot7^{49}\cdot2^{10}}{5^{29}\cdot2^8\cdot7^{48}}\\ D=\dfrac{7^{48}\cdot5^{30}\cdot2^8\left(1-28\right)}{5^{29}\cdot2^8\cdot7^{48}}\\ D=5\cdot\left(-27\right)\\ D=-135\)
Câu 2 :
\(\text{a) }9^{x+1}-5\cdot3^{2x}=324\\ \Leftrightarrow9^x\cdot9-5\cdot9^x=81\cdot4\\ \Leftrightarrow9^x\left(9-5\right)=9^2\cdot4\\ \Leftrightarrow9^x\cdot4=9^2\cdot4\\ \Leftrightarrow9^x=9^2\\ \Leftrightarrow x=2\\ \text{Vậy }x=2\\ \)
Sorry . Mình chỉ biết đến đây thôi
a: \(\Leftrightarrow4^x\left(\dfrac{3}{2}+\dfrac{5}{3}\cdot4^2\right)=4^8\left(\dfrac{3}{2}+\dfrac{5}{3}\cdot4^2\right)\)
=>4^x=4^8
=>x=8
b: \(\Leftrightarrow2^x\cdot\dfrac{1}{2}+2^x\cdot2=2^{10}\left(2^2+1\right)\)
=>2^x=2^11
=>x=11
c: =>1/6*6^x+6^x*36=6^15(1+6^3)
=>6^x=6*6^15
=>x=16
d: \(\Leftrightarrow8^x\left(\dfrac{5}{3}\cdot8^2-\dfrac{3}{5}\right)=8^9\left(\dfrac{5}{3}\cdot8^2-\dfrac{3}{5}\right)\)
=>x=9
a) \(\left(0,25\right)^3\cdot32=0,015625\cdot32=0,5\)
b) \(\left(-0,125\right)^3\cdot80^4=\dfrac{-1}{512}\cdot40960000=80000\)
c) \(\dfrac{8^2\cdot4^5}{2^{20}}=\dfrac{2^{3^2}\cdot2^{2^5}}{2^{20}}=\dfrac{2^6\cdot2^{10}}{2^{20}}=\dfrac{2^{16}}{2^{20}}=\dfrac{1}{2^4}=\dfrac{1}{16}\)
d) \(\dfrac{81^{11}\cdot3^{17}}{27^{10}\cdot9^{15}}=\dfrac{3^{4^{11}}\cdot3^{17}}{3^{3^{10}}\cdot3^{2^{15}}}=\dfrac{3^{44}\cdot3^{17}}{3^{30}\cdot3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)