Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(B=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{1}{210}\)
\(\frac{1}{2}B=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{420}\)
\(\frac{1}{2}B=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{20.21}\)
\(\frac{1}{2}B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{20}-\frac{1}{21}\)
\(\frac{1}{2}B=\frac{1}{2}-\frac{1}{21}\)
\(\Rightarrow B=\frac{\frac{1}{2}-\frac{1}{21}}{\frac{1}{2}}=\frac{19}{21}\)
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+....+\frac{1}{1+2+3+...+50}\)
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{\frac{\left(1+50\right).50}{2}}\)
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{1}{1275}\)
\(A=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{2550}\)
\(A=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+..+\frac{2}{50.51}\)
\(A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{51}\right)=2\cdot\frac{49}{102}=\frac{49}{51}\)
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+..+\frac{1}{1+2+3+...+50}\)
Ta có :
\(A=\frac{2}{2\left(1+2\right)}+\frac{2}{2\left(1+2+3\right)}+...+\frac{2}{2\left(1+2+..+50\right)}\)
\(A=\frac{2}{6}+\frac{2}{12}+...+\frac{2}{2550}\)
\(A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{50.51}\)
\(A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{51}\right)\)
\(A=2\times\frac{49}{102}\)
\(A=\frac{49}{51}\)
đề bài mk chỉ cho 50 thôi ko có 51 đâu
nên mk cho bạn 1k thôi nhé
Ta có:\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(=\frac{1}{1.1}+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)
\(=\frac{1}{1}-\frac{1}{1}+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{50}-\frac{1}{50}\)
\(=0\)
Do 0<2
Nên A<2
A = 1/ 12 +1/22+1/32+. . . +1/502 < 1+ 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5+ . . . + 1/49.50
<=> A < 1 + 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +. . . + 1/49 - 1/50
<=> A< 1 + 1 - 1/50 = 2 - 1/50
Vậy A < 2
Nhớ k nhé bạn ^^
Áp dụng công thức \(\frac{1}{a-1}-\frac{1}{a}=\frac{1}{\left(a-1\right)a}>\frac{1}{a.a}=\frac{1}{a^2}\). Ta có:
\(\frac{1}{2^2}< 2-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2}-\frac{1}{3}\)
. . . . .
\(\frac{1}{50^2}< \frac{1}{49}-\frac{1}{50}\)
_________________________________________________
\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 2-\frac{1}{50}=\frac{99}{50}\)
Vậy:A = \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 2^{\left(đpcm\right)}\)
Đặt: \(M=\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
\(=\frac{1-\left[\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}\right]}{1-\left[\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right]}\)
\(=\frac{1-\frac{99}{1}}{1-\frac{1}{100}}\)
\(M=\frac{-98}{99}\)
Đặt \(N=\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
\(=\frac{92+\left[\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}\right]}{1-\left[\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}\right]}\)
\(=\frac{92+\frac{92}{100}}{1-\frac{1}{500}}\)
\(=\frac{92+\frac{92}{100}}{\frac{499}{500}}\)
Tự làm tiếp đi!
11+2 +11+2+3 +...+11+2+3+...+50
=22(1+2) +22(1+2+3) +...+22(1+2+3+...+50)
=26 +212 +220 +...+22550
=2(11.2 +12.3 +13.4 +...+150.51 )
=2(1−12 +12 −13 +13 −14 +...+150 −151 )
=2(1−151 )
=2.5051
=10051
ai làm giúp mik cảm ơn nhiều