K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2017

\(A=\frac{3}{1}+\frac{3}{\frac{\left(2+1\right).2}{2}}+\frac{3}{\frac{\left(3+1\right).3}{2}}+....+\frac{3}{\frac{\left(100+1\right).100}{2}}\)

\(\Rightarrow A=\frac{3}{1}+\frac{6}{2.3}+\frac{6}{3.4}+...+\frac{6}{100.101}\)

\(\Rightarrow A=\frac{3}{1}+6.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{101}\right)\)

\(\Rightarrow A=\frac{3}{1}+6.\left(\frac{1}{2}-\frac{1}{101}\right)\)

\(\Rightarrow A=\frac{3}{1}+\frac{6.99}{202}=\frac{297}{101}+\frac{3}{1}=\frac{600}{101}\)

kết quả k bik có sai k

10 tháng 9 2017

Thua k câu hỏi trước của mình nhé

10 tháng 9 2017

k là k đánh lộn

12 tháng 5 2015

Đặt A = \(\frac{\frac{1}{2}}{1+2}+\frac{\frac{1}{2}}{1+2+3}+...+\frac{\frac{1}{2}}{1+2+3+....+100}\)

         = \(\frac{1}{2}\left(\frac{1}{2.3:2}+\frac{1}{3.4:2}+\frac{1}{4.5:2}+...+\frac{1}{100.101:2}\right)\)

         = \(\frac{1}{2}\left(\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{100.101}\right)\)

         = \(\frac{1}{2}.2\left(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{100.101}\right)\)

         = 1\(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{100}-\frac{1}{101}\right)\)

         = \(\frac{1}{2}-\frac{1}{101}=\frac{101}{202}-\frac{2}{202}=\frac{99}{202}\)

3 tháng 6 2018

\(A=3+\frac{3}{1+2}+\frac{3}{1+2+3}+.....+\frac{3}{1+2+...+100}\)

     \(=3+\frac{3}{3}+\frac{3}{6}+...+\frac{3}{5050}\)

        \(=\frac{2}{2}.\left(3+\frac{3}{3}+\frac{3}{6}+...+\frac{3}{5050}\right)\)

          \(=\frac{6}{2}+\frac{6}{6}+\frac{6}{12}+...+\frac{6}{10100}\)

          \(=6.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)

            \(=6.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)

             \(=6.\left(1-\frac{1}{101}\right)\)

               \(=6.\frac{100}{101}=\frac{600}{101}\)

Vậy \(A=\frac{600}{101}\)

3 tháng 6 2018

\(A=3+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+...+100}\)

\(A=\frac{3.2}{2}+\frac{3.2}{\left(1+2\right).2}+\frac{3.2}{\left(1+2+3\right).2}+...+\frac{3.2}{\left(1+2+...+100\right).2}\)

\(A=\frac{6}{2}+\frac{6}{6}+\frac{6}{12}+...+\frac{6}{10100}\)

\(A=\frac{6}{1.2}+\frac{6}{2.3}+\frac{6}{3.4}+...+\frac{6}{100.101}\)

\(A=6\cdot\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(A=6\cdot\left(1-\frac{1}{101}\right)=6\cdot\frac{100}{101}=\frac{600}{101}\)

Vay A = ........ 

14 tháng 5 2017

\(A=5+\frac{5}{1+2}+\frac{5}{1+2+3}+...+\frac{5}{1+2+3+...+100}\)
 

14 tháng 5 2017

A = \(5+\frac{5}{1+2}+\frac{5}{1+2+3}+...+\frac{5}{1+2+3+..+100}\)

\(=5x\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\right)\)

\(=5x\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{5050}\right)\)

\(=2x5x\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{10100}\right)\)

\(=10x\left(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{100x101}\right)\)

\(=10x\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(=10x\left(1-\frac{1}{101}\right)\)

\(=10x\frac{100}{101}\)

\(=\frac{1000}{101}\)

29 tháng 3 2018

\(\frac{1}{3}\)\(\frac{1}{6}\)\(\frac{1}{10}\)\(\frac{1}{15}\)

\(\frac{10}{30}\)\(\frac{5}{30}\)\(\frac{3}{30}\)\(\frac{2}{30}\)\(\frac{20}{30}\)\(\frac{2}{3}\).(lấy mẫu chung là 30)

Học tốt !