Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(A=1-\frac{1}{6}=\frac{5}{6}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(B=1-\frac{1}{n+1}=\frac{n}{n+1}\)
Mình ko chép đề nx nha
A = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{999}-\frac{1}{1000}\)
A = \(\frac{1}{1}-\frac{1}{1000}\)
A = \(\frac{1000}{1000}-\frac{1}{1000}=\frac{999}{1000}\)
B = \(\frac{1}{501}-\frac{1}{1000}+\frac{1}{502}-\frac{1}{999}+...\frac{1}{1}+...+\frac{1}{999}-\frac{1}{502}+\frac{1}{1000}+\frac{1}{501}\)
B = \(\frac{1}{501}-\frac{1}{501}+\frac{1}{1000}-\frac{1}{1000}+\frac{1}{502}-\frac{1}{502}+\frac{1}{999}-\frac{1}{999}+...+\frac{1}{1}\)
B = \(\frac{1}{1}=1\)
Vậy \(\frac{A}{B}=\frac{\frac{999}{1000}}{1}=\frac{999}{1000}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=1-\frac{1}{6}\)
\(=\frac{5}{6}\)
1/1.2+1/2.3+1/3.4+1/4.5+1/5.6
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6
=1-1/6
=5/6
a ) \(\frac{4}{20}+\frac{16}{42}+\frac{6}{15}+\frac{-3}{5}+\frac{2}{21}+\frac{-10}{21}+\frac{3}{20}\)
\(=\frac{4}{20}+\frac{8}{21}+\frac{2}{5}-\frac{3}{5}+\frac{2}{21}+\frac{-10}{21}+\frac{3}{20}\)
\(=\left(\frac{4}{20}+\frac{3}{20}\right)+\left(\frac{8}{21}+\frac{2}{21}-\frac{10}{21}\right)+\left(\frac{2}{5}-\frac{3}{5}\right)\)
\(=\frac{7}{20}+0+\frac{-1}{5}=\frac{7-4}{20}=\frac{3}{20}\)
b ) \(\frac{42}{46}+\frac{250}{186}+\frac{-2121}{2323}+\frac{-125125}{143143}\)
\(=\frac{21}{23}+\frac{-21}{23}+\frac{-125}{143}\)
\(=0+\frac{-125}{143}=-\frac{125}{143}\)
bài 2
a \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2003.2004}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2003}-\frac{1}{2004}\)
=\(1-\frac{1}{2004}=\frac{2003}{2004}\)
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{5\cdot6}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{5}-\frac{1}{6}\)
\(A=1-\frac{1}{6}\)
\(A=\frac{5}{6}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{5}-\frac{1}{6}\)
\(A=1-\frac{1}{6}\)
\(A=\frac{5}{6}\)
\(B=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)
\(B=\frac{100}{2}\)
Bài 1 mik học xong quên hết òi (mấy bài kia là hok biết luôn :V)
\(A=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{9^2}{9.10}\)
\(A=\frac{1.1.2.2.3.3...9.9}{1.2.2.3.3.4...9.10}\)
\(A=\frac{1}{10}\)
\(B=\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(B=\frac{1}{99}-\left(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
\(B=\frac{1}{99}-\left(\frac{1}{99}-\frac{1}{98}+\frac{1}{98}-\frac{1}{97}+...+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-1\right)\)
\(B=\frac{1}{99}-\left(\frac{1}{99}-1\right)\)
\(B=\frac{1}{99}-\frac{1}{99}+1\)
\(B=1\)
1) a) A=\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{3}-\frac{1}{8}=\frac{5}{24}\)
c) C=\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(C=1-\frac{1}{101}\)
\(C=\frac{100}{101}\)
d) Sửa đề: thay \(\frac{3}{92.98}\)=\(\frac{3}{92.95}\)
\(D=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{92}-\frac{1}{95}\)
\(D=\frac{1}{2}-\frac{1}{95}\)
\(D=\frac{95-2}{190}=\frac{93}{190}\)
Các bài trên áp dụng theo tính chất: \(\frac{a}{b\left(b+a\right)}\frac{1}{b}-\frac{1}{b+a}\)
Ta có \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
Ta có \(B=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(=\frac{1}{2}-\frac{1}{7}\)
\(=\frac{5}{14}\)
Ta có \(C=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\)
\(=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{11}\right)\)
\(=\frac{1}{6}-\frac{1}{22}\)
\(=\frac{4}{33}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
\(B=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(B=\frac{1}{2}-\frac{1}{7}\)
\(B=\frac{5}{14}\)
\(C=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)
\(C=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(C=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}\right)\)
\(C=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{11}\right)\)
\(C=\frac{1}{6}-\frac{1}{22}=\frac{4}{33}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{5.6}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{5}-\frac{1}{6}\)
\(A=1-\frac{1}{6}\)
\(A=\frac{6}{6}-\frac{1}{6}\)
\(A=\frac{5}{6}\)
\(B=\frac{1}{10}+\frac{1}{15}+...+\frac{1}{120}\)
\(B=2.\left(\frac{1}{20}+\frac{1}{30}+...+\frac{1}{240}\right)\)
\(B=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+..+\frac{1}{15.16}\right)\)
\(B=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(B=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(B=2.\left(\frac{4}{16}-\frac{1}{16}\right)\)
\(B=2.\frac{3}{16}\)
\(B=\frac{3}{8}\)
Chúc bạn học tốt !!!
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{5.6}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{5}-\frac{1}{6}\)
\(A=\frac{1}{1}-\frac{1}{6}\)
\(A=\frac{5}{6}\)
\(B=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
\(B=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(B=\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+...+\frac{2}{15.16}\)
\(B=2\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)
\(B=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(B=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(B=2.\frac{3}{16}\)
\(B=\frac{6}{16}=\frac{3}{13}\)