K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2016

Ta có : 2A = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)

2A A = \(\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)

A = \(1-\frac{1}{2^{10}}=\frac{1023}{1024}\)

6 tháng 4 2016

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{10}}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{1024}=\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{512}-\frac{1}{1024}\)

\(A=\frac{1}{2}-\frac{1}{1024}=\frac{511}{1024}\)

20 tháng 12 2016

a) \(D=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\)

\(\Rightarrow7D=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\)

\(\Rightarrow7D-D=\left(1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\right)-\left(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\right)\)

\(\Rightarrow6D=1-\frac{1}{7^{100}}\)

\(\Rightarrow D=\left(1-\frac{1}{7^{100}}\right).\frac{1}{6}\)

27 tháng 9 2017

a/ \(A=1+3+3^2+..........+3^{55}\)

\(\Leftrightarrow3A=3+3^2+...........+3^{55}+3^{56}\)

\(\Leftrightarrow3A-A=\left(3+3^2+........+3^{56}\right)-\left(1+3+....+3^{55}\right)\)

\(\Leftrightarrow2A=3^{56}-1\)

\(\Leftrightarrow A=\frac{3^{56}-1}{2}\)

4 tháng 7 2016

\(3^2+2^4+5^2-10^0+1^7+6^1=9+16+25-1+1+6=56\)

4 tháng 7 2016

32 + 24 + 52 - 100 + 17 + 61=56

10 tháng 2 2017

\(a.\)    \(\frac{6^3+3.6^2+3^3}{-13}=\frac{2^3.3^3+3.3^2.2^2+3^3}{-13}=\frac{2^3.3^3+3^3.2^2+3^3}{-13}\)
     \(=\frac{3^3.\left(2^3+2^2+1\right)}{-13}=\frac{3^3.13}{-13}=\frac{3^3.\left(-1\right)}{1}=-27\)

\(b.\)\(A=2^2+4^2+6^2+...+20^2=2^2\left(1+2^2+3^2+...+10^2\right)\)
       \(A=2^2.\frac{10.\left(10+1\right).\left(2.10+1\right)}{6}=4.385=1540\)
 ( Ta có: công thức tính tổng bình phương liên tiếp tứ 1 đến n là:   \(1^2+2^2+3^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\))

\(c.\)\(B=100^2+200^2+...+1000^2=\left(100.1\right)^2+\left(100.2\right)^2+...+\left(100.10\right)^2\)
        \(B=100^2.1^2+100^2.2^2+...+100^2.10^2=100^2.\left(1^2+2^2+...+10^2\right)\)
        Áp dụng công thức \(1^2+2^2+3^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
         Ta có: \(B=100^2\times385=3,850,000\)

25 tháng 9 2018

2) \(A=2+2^2+2^3+2^4+...+2^{10}\)

\(2A=2^2+2^3+2^4+...+2^{11}\) . Mà 2A - A =A nên:

\(A=\left(2^2+2^3+2^4+...2^{11}\right)-\left(2+2^2+2^3+2^4+...+2^{10}\right)\) hay

\(A=2^{11}-2\Leftrightarrow A+2=2^{11}^{^{\left(đpcm\right)}}\)

1. 1-2+3-4+5-6-.....+99-100

=(1-2)+(3-4)+(5-6)+...+(99-100)                              (50 cặp)

=(-1)+(-1)+(-1)+...+(-1)                                          (50 số -1)

=(-1).50

=-50

2.1+3-5-7+9+11-.....-397-399

=(1+3-5-7)+(9+11-13-15)+....+(387+389-391-393)+395-397-399 (99 cặp)

=(-8)+(-8)+(-8)+...+(-8)+(-401)(có 99 có -8)

=(-8).99+(-401)

=(-792)+(-401)

=-1193

3. 1-2-3+4+5-6-7+...+96+97-98-99+100

=(1-2-3+4)+(5-6-7+8)+...+(93-94-95+96)+(97-98-99+100)            (25 cặp)

=0+0+0+...+0

=0

4. A=2100-299-298-.....-22-2-1

2A=2101-2100-299-....-23-22-2

2A-A=A=2101-2100-2100+1

A=2101-2.2100+1

A=2101-2101+1

A=1