Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)=-7/21+8/24
=-1/3+1/3
=0
b)=-3/5.(2/7+5/7)+23/5
=-3/5.7/7+23/5
=-3/5.1+23/5
=-3/5+23/5
=20/5=4
c)=75/100-11/2+5/10:5/12+1/4
=3/4-11/2+1/2:5/12+1/4
=3/4+-11/2+1/2.12/5+1/4
=3/4+-22/4+6/5+1/4
=-19/4+6/5+1/4
=(-19/4+1/4)+6/5
=-18/4+6/5
=-9/2+6/5
=-45/10+12/10
=-23/10
a,\(\frac{7}{10}\cdot\frac{4}{9}+\frac{3}{10}\cdot\frac{4}{9}-1\frac{7}{9}\)
\(=\frac{14}{45}+\frac{2}{15}-\frac{16}{9}\)
\(=\frac{14}{45}+\frac{6}{45}-\frac{80}{45}\)
\(=\frac{-60}{45}=\frac{-4}{3}\)
b,\(\frac{-5}{6}+\frac{4}{9}\cdot\left(\frac{5}{4}-\frac{2}{3}\right)\cdot\left(-3\right)^2+\frac{5}{9}\cdot30\%\)
\(=\frac{-5}{6}+\frac{4}{9}\cdot\left(\frac{7}{12}\right)\cdot9+\frac{5}{9}\cdot\frac{3}{10}\)
\(=\frac{-5}{6}+\frac{7}{3}+\frac{1}{6}\)
\(=\frac{-5}{6}+\frac{14}{6}+\frac{1}{6}\)
=\(=\frac{10}{6}=\frac{5}{3}\)
a) \(\frac{3}{5}:\left(-\frac{1}{15}-\frac{1}{6}\right)+\frac{3}{5}:\left(-\frac{1}{3}-1\frac{1}{15}\right)\)
\(=\frac{3}{5}:\left(-\frac{1}{15}-\frac{1}{6}-\frac{2}{6}-1+\frac{1}{15}\right)\)
\(=\frac{3}{5}:\left(-\frac{1}{2}-1\right)\)
\(=\frac{3}{5}:\left(-\frac{3}{2}\right)\)
\(=-\frac{2}{5}\)
b) \(\left(-\frac{3}{4}+\frac{5}{13}\right):\frac{2}{7}-\left(2\frac{1}{4}+\frac{8}{13}\right):\frac{2}{7}\)
\(=\left(-\frac{3}{4}+\frac{5}{13}-2+\frac{1}{4}+\frac{8}{13}\right):\frac{2}{7}\)
\(=\left(-\frac{1}{2}+1-2\right):\frac{2}{7}\)
\(=\left(-\frac{1}{2}-1\right):\frac{2}{7}\)
\(=-\frac{3}{2}:\frac{2}{7}\)
\(=-\frac{21}{4}\)
c)
\(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+....+\left(1-\frac{1}{42}\right)+\left(1-\frac{1}{56}\right)\)
\(\left(1+1+1+....+1+1\right)+\left(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{6\times7}+\frac{1}{7\times8}\right)\)(Có 7 số 1)
\(7+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(7+1-\frac{1}{8}=\frac{63}{8}\)
Gợi ý 1 bài c) còn d) e) cũng làm như vậy nhé
Chúc bạn học tốt !!!
#)Giải :
\(A=1+2+2^2+...+2^{100}\)
\(2A=2+2^2+2^3+...+2^{101}\)
\(2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)
\(A=2^{101}-1\)
\(B=1+3^2+3^4+...+3^{100}\)
\(3^2B=3^2+3^4+3^6+...+3^{102}\)
\(3^2B-B=\left(3^2+3^4+3^6+...+3^{102}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)
\(8B=3^{102}-1\)
\(B=\frac{3^{102}-1}{8}\)
\(C=1+5^3+5^6+...+5^{99}\)
\(5^2C=5^3+5^6+5^9+...+5^{102}\)
\(5^2C-C=\left(5^3+5^6+5^9...+5^{102}\right)-\left(1+5^3+5^6+...+5^{99}\right)\)
\(24C=5^{102}-1\)
\(C=\frac{5^{102}-1}{24}\)
a) A = 1 + 22 + ... + 2100
=> 2A = 22 + 23 + ... + 2101
Lấy 2A - A = (2 + 22 + ... + 2101) - (1 + 22 + ... 2100)
A = 2101 - 1
b) B = 1 + 32 + 34 + ... + 3100
=> 32B = 32 + 34 + 36 + ..... + 3102
=> 9B = 32 + 34 + 36 + ..... + 3102
Lấy 9B - B = ( 32 + 34 + 36 + ..... + 3102) - (1 + 32 + 34 + ... + 3100)
8B = 3102 - 1
B = \(\frac{3^{102}-1}{8}\)
c) C = 1 + 53 + 56 + ... + 599
=> 53.C = 53 . 56 . 59 + ... + 5102
=> 125.C = 53 . 56 . 59 + ... + 5102
Lấy 125.C - C = (53 . 56 . 59 + ... + 5102) - (1 + 53 + 56 + ... + 599)
124.C = 5102 - 1
=> C = \(\frac{5^{102}-1}{124}\)
A= ( 6 - 2/3 + 1/2) -( 5 +5/3 - 3/2) - (3 - 1/3 + 5/2)
= 6 - 2/3 + 1/2 - 5 - 5/3 + 3/2 - 3 + 1/3 - 5/2
= (6-5-3) - (2/3 + 5/2 - 1/3) + (1/2 +3/2 -5/2)
= -2 - 2 + (-1/2)
= -4 -1/2
=-9/2
A = ( 6 - 1 ) - ( 5 + 1 / 6 ) - ( 3 + 13 / 6 )
A = 5 - 31 / 6 - 31 / 6
A = -16 / 3