Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/1*2+1/2*3+...+1/9*10
=1-1/2+1/2-1/3+...+1/9-1/10
=(1-1/10)+(1/2-1/2)+...+(1/9-1/9)
=(10/10-1/10)+0+...+0=9/10
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+..+10}\)
\(=\frac{1}{3}+\frac{1}{6}+...+\frac{1}{55}\)
\(=2\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)=2.\left(\frac{1}{2}-\frac{1}{11}\right)=2.\frac{9}{22}=\frac{9}{11}\)
a)\(2-3+5-7+9-11+13-15+17=\left(2+5+9+13+17\right)-\left(3+7+11+15\right)\)
\(=46-36=10\)
b)\(\frac{1}{1.2}+\frac{1}{2.3}+...............+\frac{1}{8.9}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.................+\frac{1}{8}-\frac{1}{9}\)
\(=\frac{1}{1}-\frac{1}{9}=\frac{9}{9}-\frac{1}{9}=\frac{8}{9}\)
Áp dụng \(\frac{1}{n.\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
Chúc bạn học tốt
Đề là tính bằng cách hợp lý đúng ko bạn
a, 2-3+5-7+9-11+13-15+17
= (5+13) - (3+15) + (2+9-11) + (17-7)
= 18 - 18 + 0 +10
= 10
b, \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}\)
\(=\frac{8}{9}\)
a)\(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{23.27}=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}=\frac{1}{3}-\frac{1}{27}=\frac{8}{27}\)
b)\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{6.7}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{6}-\frac{1}{7}=\frac{1}{2}-\frac{1}{7}=\frac{5}{14}\)
c)\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{11.13}+\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{9.10}=\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)+2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{1}{3}-\frac{1}{13}+2\left(1-\frac{1}{10}\right)=\frac{10}{39}+\frac{9}{5}=\frac{401}{195}\)
A = ( 6 : 3/5 - 7/6 * 6/7 ) : ( 21/5 * 10/11 + 57/11 )
A = ( 10 - 1 ) : ( 42/11 + 57/11)
A = 9 : 9
A = 1
B = 59 /10 : 3/2 - ( 7/3 * 9/2 - 2 * 7/3 ) : 7/4
B = 59/15 - ( 21/2 - 14/3 ) : 7/4
B = 59/15 - 35/6 : 7/4
B = 59/15 - 10/3
B = 3/5
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{8}\)
\(\Rightarrow A=\frac{3}{8}\)
\(A=\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{7}-\frac{1}{8}\right)\)
\(A=\frac{1}{2}-\frac{1}{8}\)
\(A=\frac{3}{8}\)
a) 1/11 + 2/11 + 3/11 + ... + 10/11
= 1 + 2 + 3 + ... + 10 / 11
= (1 + 10).10:2 / 11
= 11.5/11
= 5
b) 1/10×20 + 1/20×30 + 1/30×40 + ... + 1/90×100
= 1/10×10 × (1/1×2 + 1/2×3 + 1/3×4 + ... + 1/9×10)
= 1/100 × (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/9 - 1/10)
= 1/100 × (1 - 1/10)
= 1/100 × 9/10
= 9/1000