Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+1/2x3+1/3X6+1/4X10+...+1/16X136
A=1+3/2+2+5/2+3+...+17/2
A=2/2+3/2+4/2+5/2+6/2+...+17/2
A=2+3+4+5+...+16+17/2
A=(2+17)x16:2/2
A=19x16:2/2
A=304:2/2
A=152/2
A=76
****
ta có
A = \(1+\frac{1+2}{2}+\frac{1+2+3}{3}+\frac{1+2+3+4}{4}+......+\frac{1+2+3+\text{4 +....+16}}{16}\)
xét tổng S = 1+2+3+4+5+......+n = \(\frac{\left(n+1\right)n}{2}\) lấy \(\frac{S}{n}=\frac{\frac{\left(n+1\right)n}{2}}{n}=\frac{n+1}{2}\)
ta có
A=\(1+\frac{\frac{2\left(2+1\right)}{2}}{2}+\frac{\frac{3\left(3+1\right)}{2}}{3}+\frac{\frac{4\left(4+1\right)}{2}}{4}+\frac{\frac{5\left(5+1\right)}{2}}{5}+......+\frac{\frac{16\left(16+1\right)}{2}}{16}\)
A = \(1+\frac{1+2}{2}+\frac{1+3}{2}+\frac{1+4}{2}+\frac{1+5}{2}+......+\frac{1+16}{2}\)
A = \(1+\frac{1+2+1+3+1+\text{4+1+5+1+6+.....+1+16}}{2}\)
A = \(1+\frac{151}{2}\)
A = \(\frac{153}{2}\)
Ta có :
\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{16}\left(1+2+3+4+...+16\right)\)
\(=\)\(1+\frac{1}{2}.\frac{2\left(2+1\right)}{2}+\frac{1}{3}.\frac{3\left(3+1\right)}{2}+\frac{1}{4}.\frac{4\left(4+1\right)}{2}+...+\frac{1}{16}.\frac{16\left(16+1\right)}{2}\)
\(=\)\(1+\frac{2+1}{2}+\frac{3+1}{2}+\frac{4+1}{2}+...+\frac{16+1}{2}\)
\(=\)\(\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{17}{2}\)
\(=\)\(\frac{2+3+4+5+...+17}{2}\)
\(=\)\(\frac{\frac{16\left(17+2\right)}{2}}{2}\)
\(=\)\(\frac{152}{2}\)
\(=\)\(76\)
Bài này áp dụng công thức \(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\) nhé
Chúc bạn học tốt ~
b)Ta có:\(A=1+\frac{1}{2.\left(1+2\right)}+\frac{1}{3.\left(1+2+3\right)}+...+\frac{1}{16.\left(1+2+3+...+16\right)}\)
\(=1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+...+\frac{1}{16}.\left(1+2+3+...+16\right)\)
\(=1+\frac{1}{2}.3+\frac{1}{3}.6+...+\frac{1}{16}.136\)
\(=1+1,5+2+...+8,5\)
\(=\frac{\left(8,5+1\right).\left[\left(8,5-1\right):0,5+1\right]}{2}=76\)
B=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}<\)
B=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
B=\(1-\frac{1}{8}=\frac{8}{8}-\frac{7}{8}=\frac{1}{8}<2\)
Vậy 1/8<2 hay 1/8<16/8
chứng minh rằng B là số nguyên khi A là phân số