Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1/2+1/4+1/8+1/16+1/32+1/64
S=1-1/2+1/2-1/4+1/4-1/8+1/8-1/16+1/16-1/32+1/32-1/64
S=1-1/64
S=63/64
a) Số các số hạng là:
( 99-49):2+1\(=\)26 ( số )
Tổng của dãy số trên là:
( 99 + 49 ) x 26 : 2 \(=\)1924
Đáp số: 1924
b) \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}+\frac{1}{64}-\frac{1}{128}\)
\(=\frac{1}{1}-\frac{1}{128}\)
\(=\frac{127}{128}\)
a) Số các số hạng là (99 - 49) : 2 + 1 = 26 số
Tổng của dãy trên là:
(99 + 49) x 26 : 2 = 1924
Đáp số : 1924
b) 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
= 1/1 - 1/2 + 1/2 - 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64 + 1/64 - 1/128
= 1/1 - 1/128
= 127/128
Đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\right)\)
\(A=1-\frac{1}{64}\)
\(A=\frac{63}{64}\)
=32/64+14/64+8/64+4/64+2/64+1/64
=32+14+8+4+2+1/64
=61/64
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}\)
\(=1-\frac{1}{64}\)
\(=\frac{63}{64}\)
gọi tổng đó là A ta có :
A = 1/2 + 1/4 + 1/8 +1/16 + 1/32 +1/64 + 1/128
2A= ( 1/2 * 2) + ( 1/4 * 2 ) + ( 1/8 * 2) + ( 1/16 * 2) + ( 1/32 * 2 ) + ( 1/64 * 2 ) + ( 1/128 * 2)
2A= 1+ 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64
TA LẤY 2A - 1A = 1A
A = ( 1 + 1/2 +1/4 + 1/8 + 1/16 + 1/32 + 1/64 ) - ( 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 )
TA THẤY 1/2 - 1/2 = 0 ; 1/4 - 1/4 = 0 ; 1/8 - 1/8 = 0 ;1/16 - 1/16 = 0 ; 1/32 - 1/32 = 0 ; 1/64- 1/64 = 0
NÊN A = 1 - 1/128 = 127/128
gọi tổng đó là A ta có :
A = 1/2 + 1/4 + 1/8 +1/16 + 1/32 +1/64 + 1/128
2A= ( 1/2 * 2) + ( 1/4 * 2 ) + ( 1/8 * 2) + ( 1/16 * 2) + ( 1/32 * 2 ) + ( 1/64 * 2 ) + ( 1/128 * 2)
2A= 1+ 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64
TA LẤY 2A - 1A = 1A
A = ( 1 + 1/2 +1/4 + 1/8 + 1/16 + 1/32 + 1/64 ) - ( 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 )
TA THẤY 1/2 - 1/2 = 0 ; 1/4 - 1/4 = 0 ; 1/8 - 1/8 = 0 ;1/16 - 1/16 = 0 ; 1/32 - 1/32 = 0 ; 1/64- 1/64 = 0
NÊN A = 1 - 1/128 = 127/128
\(\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\frac{3}{16}+\frac{3}{32}+\frac{3}{64}+\frac{3}{128}+\frac{3}{256}+\frac{3}{512}+\frac{3}{1024}\)
=\(3.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}\right)\)
=\(3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}+\frac{1}{64}-\frac{1}{128}+\frac{1}{128}-\frac{1}{256}+\frac{1}{256}-\frac{1}{512}+\frac{1}{512}-\frac{1}{1024}\right)\)
=\(3.\left(1-\frac{1}{1024}\right)=3.\left(\frac{1024}{1024}-\frac{1}{1024}\right)=3.\frac{1023}{1024}=\frac{3069}{1024}\)
Chúc em học tốt
dề có sai ko
B= 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64
B=1/2+1/2^2+1/2^3+1/2^4+1/2^5+1/2^6
=>2B=1+1/2+1/2^2+...1/3^5
=>2B-B=1-1/2^6
=>B=1-1/64
=>B=63/64