Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+...+\dfrac{1}{15}-\dfrac{1}{18}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{18}\right)=\dfrac{1}{3}\cdot\dfrac{5}{18}=\dfrac{5}{54}\)
Đặt A =4/1x3 + 6/3x6+8/6x10 +14/10x17 +12/17x23 . => A/2 = 2/1x3 +3/3x6 +4/6x10+7/10x17 +6/17x23. =>A/2 = 1-1/3 + 1/3-1/6+1/6-1/10+1/10-1/17+1/17-1/23. => A/2=1-1/23 . => A/2=22/23 . => A=44/23 . cho mik nha
\(A=\frac{4}{1.3}+\frac{6}{3.6}+\frac{8}{6.10}+\frac{14}{10.17}+\frac{12}{17.23}\)
\(=2\left(\frac{2}{1.3}+\frac{3}{3.6}+\frac{4}{6.10}+\frac{7}{10.17}+\frac{6}{17.23}\right)\)
\(=2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{17}+\frac{1}{17}-\frac{1}{23}\right)\)
\(=2\left(1-\frac{1}{23}\right)\)
\(=2\cdot\frac{22}{23}=\frac{44}{23}\)
\(N=\dfrac{2}{3.6}+\dfrac{2}{6.9}+...+\dfrac{2}{2019.2022}\)
\(\Rightarrow N=2\left(\dfrac{1}{3.6}+\dfrac{1}{6.9}+...+\dfrac{1}{2019.2022}\right)\)
\(\Rightarrow N=\dfrac{2}{3}\left(\dfrac{3}{3.6}+\dfrac{3}{6.9}+...+\dfrac{3}{2019.2022}\right)\)
\(\Rightarrow N=\dfrac{2}{3}\left(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+...+\dfrac{1}{2019}-\dfrac{1}{2022}\right)\)
\(\Rightarrow N=\dfrac{2}{3}\left(\dfrac{1}{3}-\dfrac{1}{2022}\right)\)
\(\Rightarrow N=\dfrac{2}{3}.\dfrac{673}{2022}\\ \Rightarrow N=\dfrac{673}{3033}\)
a,6B=2.4.6+4.6.(8-2)+...............+98.100.(102-96)
6B=2.4.6+4.6.8-2.4.6+..............+98.100.102-96.98.100
6B=98.100.102
B=98.100.102:6
B=166600
Đặt 1.4+2.5+.....+n.(n+3)=C
Hướng dẫn: 3C = 3.[1.2 +2.3 +3.4 + ... + n(n + 1)] + 3.(2 + 4 + 6 + ... + 2n)
= 1.2.3 + 2.3.3 + 3.4.3 + ... + n(n + 1).3 + 3.(2 + 4 + 6 + ... + 2n)
Nên C = n(n+1)(n+5):3
\(\frac{1.5.6+2.10.12+4.20.24+9.45.54}{1.3.5+2.6+4.12.20+9.27.45}\)
\(\frac{4}{3.6}+\frac{4}{6.9}+...+\frac{4}{12.15}\)
\(=\frac{4\left(\frac{3}{3.6}+\frac{3}{6.9}+...+\frac{3}{12.15}\right)}{3}\)
\(=\frac{4\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{12}-\frac{1}{15}\right)}{3}\)
\(=\frac{4\left(\frac{1}{3}-\frac{1}{15}\right)}{3}\)
\(=\frac{\frac{16}{15}}{3}=\frac{48}{15}\)