Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét :\(1-\frac{1}{n^2}=\frac{n^2-1}{n^2}=\frac{\left(n+1\right)\left(n-1\right)}{n^2}\)
Do đó : \(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right).....\left(1-\frac{1}{100^2}\right)\)
\(=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}.........\frac{99.101}{100^2}\)
\(=\frac{\left(1.2.3....99\right)\left(3.4.5....101\right)}{\left(2.3.4.....100\right)\left(2.3.4.....100\right)}\)
\(=\frac{101}{100.2}\)
\(=\frac{101}{200}\)
1272 + 146.127 + 732
= 1272 + 2 . 73 .127 + 732
= (127 + 73 ) 2
= 200 2
Bài 1:
a,\(127^2+146.127+73^2=127^2+2.127.73+73^2\)\(=\left(127+73\right)^2=200^2=40000\)
b,\(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)\)
\(18^8-\left(18^8-1\right)=1\)
\(c,100^2-99^2+98^2-97^2+...+2^2-1\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)\(=199+195+...+3\)
áp dụng công thức Gauss ta đc đáp án là:10100
d, mk khỏi ghi đề dài dòng:
\(\dfrac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}=\dfrac{560000}{40000}=14\)Bài 2:
\(A=\left(2-1\right)\left(2+1\right)\)\(\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)Cứ tiếp tục ta đc \(A=2^{32}-1< B=2^{32}\)
\(\left(3-1\right)C=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)...\left(3^2+16\right)\)giải như câu a đc:\(\left(3-1\right)C=3^{32}-1\)
\(\Rightarrow C=\dfrac{3^{32}-1}{3-1}=\dfrac{3^{32}-1}{2}< D=3^{32}-1\)
1c,
\(=100^2-99^2+98^2-97^2+...+2^2-1^2\\ =\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+...+\left(2+1\right)\left(2-1\right)\\ =\left(100+99\right)\cdot1+\left(98+97\right)\cdot1+...+\left(2+1\right)\cdot1\\ =100+99+98+97+...+2+1\\ =\dfrac{100\cdot101}{2}=5050\)
a,b,c,f tìm cách áp dụng HĐT vào nhé! động não tí xem :)
d) Sửa đề :\(100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)
\(=199+195+...+3\)
Khi đó tổng sẽ là:
\(\dfrac{\left(199+3\right)\left[\dfrac{\left(199-3\right)}{4}+1\right]}{2}=5050.\)
e) \(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)+...+\left(2^{64}+1\right)+1\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)+...+\left(2^{64}+1\right)+1\)
\(=2^{128}-1+1\)
\(=2^{128}.\)
a) ( x2 - 2x + 2 )( x2 - 2 )( x2 + 2x + 2 )( x2 + 2 )
= [ ( x2 + 2 )2 - 4x2 ] ( x4 - 4 )
= ( x4 + 4 ) ( x4 - 4 )
= x8 - 16
b) ( a + b + c )2 + ( a + b - c )2 + ( 2a -b )2
= 2 ( a2 + b2 + c2 ) + 2 ( ab + bc + ac ) + 2 ( ab - bc - ac ) + ( 4a2 - 4ab + b2 )
= 2 ( a2 + b2 + c2 ) + 4ab - 4ab + 4a2 + b2
= 6a2 + 3b2 + 2c2
c) 1002 - 992 + 982 - 972 + ..... + 22 - 12
= ( 100 - 99 )( 100 + 99 ) + ( 98 - 97 )( 98 + 97 ) + ..... + ( 2 - 1 )( 2 + 1 )
= 199 + 197 + 195 + ..... + 5 + 3
= \(\frac{\left(199+3\right)\left(\left(199-3\right)\frac{1}{2}+1\right)}{2}\)
= 9999
d) 3 ( 22 + 1 )( 24 +1 )......( 264 + 1 ) + 1
= ( 22 -1 )( 22 + 1 )(24 + 1 ).....( 264 + 1 ) + 1
= ( 24 -1 )( 24 + 1 )( 28 + 1 )......( 264 + 1 ) +1
= ( 28 -1 )( 28 + 1).....( 264 + 1) +1
............
= ( 264 - 1)( 264 +1 ) + 1
= 2128
b) -12 + 22 - 32 + 42 - ... - 992 + 1002
= (22 - 12) + (42 - 32) + ... + (1002 - 992)
= (2 + 1)(2 - 1) + (4 + 3)(4 - 3) + ... + (100 + 99)(100 - 99)
= (1 + 2) + (3 + 4) + ... + (99 + 100)
= 5050
a) (3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)
= [(3 - 1)(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)] : 2
= [(32 - 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)] : 2
= [(34 - 1)(34 + 1)(38 + 1)(316 + 1)] : 2
Và cứ như thế ta được kết quả là (332 - 1) : 2 = 926510094425920
i) (x - 1)(5x + 3) = (3x - 8)(x - 1)
<=> 5x2 + 3x - 5x - 3 = 3x2 - 3x - 8x + 8
<=> 5x2 - 2x - 3 = 3x2 - 11x + 8
<=> 5x2 - 2x - 3 - 3x2 + 11x - 8 = 0
<=> 2x2 + 9x - 11 = 0
<=> 2x2 + 11x - 2x - 11 = 0
<=> x(2x + 11) - (2x + 11) = 0
<=> (x - 1)(2x + 11) = 0
<=> x - 1 = 0 hoặc 2x + 11 = 0
<=> x = 0 hoặc x = -11/2
m) 2x(x - 1) = x2 - 1
<=> 2x2 - 2x = x2 - 1
<=> 2x2 - 2x - x2 + 1 = 0
<=> x2 - 2x + 1 = 0
<=> (x - 1)2 = 0
<=> x - 1 = 0
<=> x = 1
n) (2 - 3x)(x + 11) = (3x - 2)(2 - 5x)
<=> 2x + 22 - 3x2 - 33x = 6x - 15x2 - 4 + 10x
<=> -31x + 22 - 3x2 = 16x - 15x2 - 4
<=> 31x - 22 + 3x2 + 16x - 15x2 - 4 = 0
<=> 47x - 18 - 12x2 = 0
<=> -12x2 + 47x - 26 = 0
<=> 12x2 - 47x + 26 = 0
<=> 12x2 - 8x - 39x + 26 = 0
<=> 4x(3x - 2) - 13(3x - 2) = 0
<=> (4x - 13)(3x - 2) = 0
<=> 4x - 13 = 0 hoặc 3x - 2 = 0
<=> x = 13/4 hoặc x = 2/3
i) (x - 1)(5x + 3) = (3x - 8)(x - 1)
<=> 5x2 + 3x - 5x - 3 = 3x2 - 3x - 8x + 8
<=> 5x2 - 2x - 3 = 3x2 - 11x + 8
<=> 5x2 - 2x - 3 - 3x2 + 11x - 8 = 0
<=> 2x2 + 9x - 11 = 0
<=> 2x2 + 11x - 2x - 11 = 0
<=> x(2x + 11) - (2x + 11) = 0
<=> (x - 1)(2x + 11) = 0
<=> x - 1 = 0 hoặc 2x + 11 = 0
<=> x = 0 hoặc x = -11/2
m) 2x(x - 1) = x2 - 1
<=> 2x2 - 2x = x2 - 1
<=> 2x2 - 2x - x2 + 1 = 0
<=> x2 - 2x + 1 = 0
<=> (x - 1)2 = 0
<=> x - 1 = 0
<=> x = 1
n) (2 - 3x)(x + 11) = (3x - 2)(2 - 5x)
<=> 2x + 22 - 3x2 - 33x = 6x - 15x2 - 4 + 10x
<=> -31x + 22 - 3x2 = 16x - 15x2 - 4
<=> 31x - 22 + 3x2 + 16x - 15x2 - 4 = 0
<=> 47x - 18 - 12x2 = 0
<=> -12x2 + 47x - 26 = 0
<=> 12x2 - 47x + 26 = 0
<=> 12x2 - 8x - 39x + 26 = 0
<=> 4x(3x - 2) - 13(3x - 2) = 0
<=> (4x - 13)(3x - 2) = 0
<=> 4x - 13 = 0 hoặc 3x - 2 = 0
<=> x = 13/4 hoặc x = 2/3