Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{1}{26.31}\)
\(=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}+...+\frac{1}{26}-\frac{1}{31}\)
\(=1+\left(-\frac{1}{6}+\frac{1}{6}\right)+\left(-\frac{1}{11}+\frac{1}{11}\right)+...+\left(-\frac{1}{26}+\frac{1}{26}\right)-\frac{1}{31}\)
\(=1-\frac{1}{31}=\frac{31-1}{31}\)
\(=\frac{30}{31}\)
Vậy \(A=\frac{30}{31}\)
\(A=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{26.31}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{26}-\frac{1}{31}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{31}\)
\(\Rightarrow A=\frac{30}{31}\)
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{26.31}\)
\(\frac{5^2}{1.6}=5.\left(\frac{1}{1}-\frac{1}{6}\right)\)
\(\frac{5^2}{6.11}=5.\left(\frac{1}{6}-\frac{1}{11}\right)\)
............................
\(\frac{5^2}{26.31}=5.\left(\frac{1}{26}-\frac{1}{31}\right)\)
cộng hết lại: \(5.\left(\frac{1}{1}-\frac{1}{31}\right)=5\left(\frac{30}{31}\right)=\frac{150}{31}\)
Ta có :
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+...+\frac{5^2}{26.31}\)
\(=\)\(5\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{26.31}\right)\)
\(=\)\(5\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(=\)\(5\left(1-\frac{1}{31}\right)\)
\(=\)\(5-\frac{5}{31}\)
\(=\)\(\frac{150}{31}\)
Chúc bạn học tốt ~
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}\)
\(=5^2\left(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+\frac{1}{16.21}+\frac{1}{21.26}\right)\)
\(=25.\frac{1}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{21}-\frac{1}{26}\right)\)
\(=5\left(1-\frac{1}{26}\right)\)
\(=5.\frac{25}{26}\)
\(=\frac{125}{26}\)
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{26.31}\)
\(=5\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)\)
\(=5\left(\frac{6-1}{1.6}+\frac{11-6}{6.11}+...+\frac{31-26}{26.31}\right)\)
\(=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(=5\left(1-\frac{1}{31}\right)=\frac{150}{31}\)
\(S=\frac{5^2}{1\cdot6}+\frac{5^2}{6\cdot11}+\frac{5^2}{11\cdot16}+\frac{5^2}{16\cdot21}+\frac{5^2}{21\cdot26}\)
\(S=\frac{25}{1\cdot6}+\frac{25}{6\cdot11}+\frac{25}{11\cdot16}+\frac{25}{16\cdot21}+\frac{25}{21\cdot26}\)
\(S=5\left[\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+\frac{5}{11\cdot16}+\frac{5}{16\cdot21}+\frac{5}{21\cdot26}\right]\)
\(S=5\left[1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{21}-\frac{1}{26}\right]\)
\(S=5\left[1-\frac{1}{26}\right]=5\cdot\frac{25}{26}=\frac{125}{26}\)
Bài làm
S = \(\frac{5^2}{1.6}\)+ \(\frac{5^2}{6.11}\)+ \(\frac{5^2}{11.16}\)+ \(\frac{5^2}{16.21}\)+\(\frac{5^2}{21.26}\)
S : 5 = \(\frac{5}{1.6}\)+ \(\frac{5}{6.11}\)+ \(\frac{5}{11.16}\) + \(\frac{5}{16.21}\) + \(\frac{5}{21.26}\)
S : 5 = 1 - \(\frac{1}{6}\)+ \(\frac{1}{6}\)- \(\frac{1}{11}\) + \(\frac{1}{11}\)- \(\frac{1}{16}\)+ \(\frac{1}{16}\)- \(\frac{1}{21}\)+ \(\frac{1}{21}\)- \(\frac{1}{26}\)
S : 5 = 1 - \(\frac{1}{26}\)
S : 5 = \(\frac{25}{26}\)
S = \(\frac{125}{26}\)
\(\Rightarrow A=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+.....+\frac{1}{26}-\frac{1}{31}\)
\(\Rightarrow A=1-\frac{1}{31}\)
\(\Rightarrow A=\frac{30}{31}\)
\(A=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{26.31}\)
\(=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{26}-\frac{1}{31}\)
\(=1+\left(-\frac{1}{6}+\frac{1}{6}\right)+\left(-\frac{1}{11}+\frac{1}{11}\right)+...+\left(-\frac{1}{26}+\frac{1}{26}\right)-\frac{1}{31}\)
\(=1-\frac{1}{31}=\frac{31-1}{31}=\frac{30}{31}\)
\(\text{Vậy }A=\frac{30}{31}\).