K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2018

thay x và y vào là đc mà bạn

18 tháng 12 2018

\(a,x^2+4y^2-4xy\)

\(=x^2-4xy+4y^2\)

\(=x^2-2.x.2y+\left(2y\right)^2\)

\(=\left(x-2y\right)^2\)

Thay x = 18 và y = 4 vào biểu thức ta có :

\(\left(18-2.4\right)^2=\left(18-8\right)^2=10^2=1000\)

KL :.....

Bài 1:

a) Ta có: \(x^2+4y^2-4xy=\left(x-2y\right)^2\)(*)

Thay x=18, y=4 vào biểu thức (*), ta được

\(\left(18-2\cdot4\right)^2=\left(18-8\right)^2=100\)

Vậy: 100 là giá trị của biểu thức \(x^2+4y^2-4xy\) tại x=18 và y=4

b) Ta có: \(\left(2x+1\right)^2+\left(2x-1\right)^2-2\left(1+2x\right)\left(1-2x\right)\)

\(=\left(2x+1\right)^2+\left(2x-1\right)^2+2\left(2x+1\right)\left(2x-1\right)\)

\(=\left(2x+1+2x-1\right)^2=\left(4x\right)^2\)(1)

Thay x=100 vào biểu thức (1), ta được

\(\left(4\cdot100\right)^2=400^2=160000\)

Vậy: 160000 là giá trị của biểu thức \(\left(2x+1\right)^2+\left(2x-1\right)^2-2\left(1+2x\right)\left(1-2x\right)\)tại x=100

Bài 2:

a) Để giá trị của biểu thức \(\frac{x^2-10x+25}{x^2-5x}\)được xác định thì \(x^2-5x\ne0\Leftrightarrow x\left(x-5\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x-5\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne5\end{matrix}\right.\)

Vậy: khi \(x\notin\left\{0;5\right\}\) thì giá trị của biểu thức \(\frac{x^2-10x+25}{x^2-5x}\)được xác định

b) Để giá trị của biểu thức \(\frac{x^2-10x}{x^2-4}\) được xác định thì

\(x^2-4\ne0\Leftrightarrow\left(x-2\right)\left(x+2\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)

Vậy: khi \(x\notin\pm2\) thì giá trị của biểu thức \(\frac{x^2-10x}{x^2-4}\) được xác định

19 tháng 1 2020

Bài 1:

\(a,x^2+4y^2-4xy\)

\(=\left(x-2y\right)^2\left(1\right)\)

Thay \(x=18;y=4\) vào \(\left(1\right)\) ta được:

\(\left(18-2.4\right)^2=\left(18-8\right)^2=10^2=100\)

Vậy ......................................

\(b,\left(2x+1\right)^2+\left(2x-1\right)^2-2\left(1+2x\right)\left(1-2x\right)\)

\(=\left(2x+1\right)^2+\left(2x-1\right)^2+2\left(2x+1\right)\left(2x-1\right)\)

\(=\left(2x+1\right)^2+\left(2x-1\right)^2+2.\left(4x^2-1\right)\)

Thay \(x=100\) vào biểu thức trên ta được:

\(\left(2.100+1\right)^2+\left(2.100-1\right)^2+2\left(4.100^2-1\right)\)

\(=201^2+199^2+2.39989\)

\(=40401+39601+79978\)

\(=160000\)

Vậy ............................

Bài 2:

\(a,\frac{x^2-10x+25}{x^2-5x}\)

Để biểu thức trên được xác định \(\Leftrightarrow x^2-5x\ne0\)

\(\Leftrightarrow x\left(x-5\right)\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x-5\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne5\end{matrix}\right.\)

\(b,\frac{x^2-10x}{x^2-4}\)

Để biểu thức trên xác định \(\Leftrightarrow x^2-4\ne0\)

\(\Leftrightarrow x^2-2^2\ne0\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-2\\x\ne2\end{matrix}\right.\)

3 tháng 12 2018

thiếu đề : \(\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}.\)

Bài 2 :

a, Để \(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\frac{4^2-4}{5}\)

\(\Rightarrow\hept{\begin{cases}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)

b,\(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\frac{4x^2-4}{5}\)

\(B=\left[\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x+1\right)\left(x-1\right)}-\frac{x+3}{2\left(x+1\right)}\right].\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(B=\left[\frac{x^2+2x+1}{2\left(x-1\right)\left(x+1\right)}+\frac{6}{2\left(x-1\right)\left(x+1\right)}-\frac{x^2+2x-3}{2\left(x-1\right)\left(x+1\right)}\right]\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(B=\left[\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\right]\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(B=\frac{4}{2\left(x-1\right)\left(x+1\right)}.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(B=\frac{8}{5}\)

=> giá trị của B ko phụ thuộc vào biến x

3 tháng 12 2018

bài 1

=\(^{\left(2x+1\right)^2+2\left(2x+1\right)\left(2x-1\right)+\left(2x+1\right)^2}\)

=\(\left(2x+1+2x-1\right)^2\)

=\(\left(4x\right)^2\)

=\(16x^2\)

Tại x=100 thay vào biểu thức trên ta có:

16*100^2=1600000

23 tháng 12 2018

1/ 

a) \(x^2+4y^2+4xy-16\)

\(=x^2+2.2xy+\left(2y\right)^2-4^2\)

\(=\left(x+2y\right)^2-4^2\)

\(=\left(x+2y-4\right)\left(x+2y+4\right)\)

23 tháng 12 2018

b) ta có:

\(\left(2x+y\right)\left(y-2x\right)+4x^2\)

\(=-\left(2x-y\right)\left(2x+y\right)+4x^2\)

\(=\left(2x\right)^2-\left[\left(2x\right)^2-y^2\right]\)

\(=\left(2x\right)^2-\left(2x\right)^2+y^2\)

\(=y^2\)

Vậy giá trị của biểu thức trên không phụ thuộc vào giá trị của x

nên tại y = 10

giá trị của biểu thức trên bằng y2 = 102 = 100

Bài 1: Rút gọn các biểu thức sau: a) \(3x^2\) - 2x( 5+ 1,5x) +10 b) 7x ( 4y- x) + 4y( y-7x) - 2( \(2y^2\) - 3,5x) c) \(\left\{2x-3\left(x-1\right)-5\left[x-4\left(3-2x\right)+10\right]\right\}.\left(-2x\right)\) Bài 2: Tìm x, biết: a) 3( 2x -1) - 5( x -3) + 6( 3x -4) = 24 b) \(2x^2+3\left(x^2-1\right)=5x\left(x+1\right)\) c) \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\) d) \(3x\left(x+1\right)-2x\left(x+2\right)=-1-x\) Bài 3: Tính giá trị của các...
Đọc tiếp

Bài 1: Rút gọn các biểu thức sau:

a) \(3x^2\) - 2x( 5+ 1,5x) +10

b) 7x ( 4y- x) + 4y( y-7x) - 2( \(2y^2\) - 3,5x)

c) \(\left\{2x-3\left(x-1\right)-5\left[x-4\left(3-2x\right)+10\right]\right\}.\left(-2x\right)\)

Bài 2: Tìm x, biết:

a) 3( 2x -1) - 5( x -3) + 6( 3x -4) = 24

b) \(2x^2+3\left(x^2-1\right)=5x\left(x+1\right)\)

c) \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\)

d) \(3x\left(x+1\right)-2x\left(x+2\right)=-1-x\)

Bài 3: Tính giá trị của các biểu thức sau:

a)\(A=x^2\left(x+y\right)-y\left(x^2+y^2\right)+2002\) Với \(x=1;y=-1\)

b) \(B=5x\left(x-4y\right)-4y\left(y-5x\right)-\dfrac{11}{20}\) Với \(x=-0,6;y=-0,75\)

Bài 4: Chứng tỏ rằng giá trị của biểu thức sau không phụ thuộc vào giá trị biến:

a) \(2\left(2x+x^2\right)-x^2\left(x+2\right)+\left(x^3-4x+3\right)\)

b) \(z\left(y-x\right)+y\left(z-x\right)+x\left(y+z\right)-2yz+100\)

c) \(2y\left(y^2+y+1\right)-2y^2\left(y+1\right)-2\left(y+10\right)\)

Bài 5: Tính giá trị của biểu thức:

a) \(A=\left(x-3\right)\left(x-7\right)-\left(2x-5\right)\left(x-1\right)\) Với \(x=0;x=1;x=-1\)

b) \(B=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\) Với \(\left|x\right|=2\)

c) \(C=\left(2x+y\right)\left(2z+y\right)+\left(x-y\right)\left(y-z\right)\) Với \(x=1;y=1;z=\left|1\right|\)

7
AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 1:

a) \(3x^2-2x(5+1,5x)+10=3x^2-(10x+3x^2)+10\)

\(=10-10x=10(1-x)\)

b) \(7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)\)

\(=28xy-7x^2+(4y^2-28xy)-(4y^2-7x)\)

\(=-7x^2+7x=7x(1-x)\)

c)

\(\left\{2x-3(x-1)-5[x-4(3-2x)+10]\right\}.(-2x)\)

\(\left\{2x-(3x-3)-5[x-(12-8x)+10]\right\}(-2x)\)

\(=\left\{3-x-5[9x-2]\right\}(-2x)\)

\(=\left\{3-x-45x+10\right\}(-2x)=(13-46x)(-2x)=2x(46x-13)\)

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 2:

a) \(3(2x-1)-5(x-3)+6(3x-4)=24\)

\(\Leftrightarrow (6x-3)-(5x-15)+(18x-24)=24\)

\(\Leftrightarrow 19x-12=24\Rightarrow 19x=36\Rightarrow x=\frac{36}{19}\)

b)

\(\Leftrightarrow 2x^2+3(x^2-1)-5x(x+1)=0\)

\(\Leftrightarrow 2x^2+3x^2-3-5x^2-5x=0\)

\(\Leftrightarrow -5x-3=0\Rightarrow x=-\frac{3}{5}\)

\(2x^2+3(x^2-1)=5x(x+1)\)

6 tháng 7 2017

a. \(=4x^2-4xy+y^2+4x^2-4xy+y^2=8x^2+2y^2\)

\(=8.\left(\frac{1}{21}\right)^2+4.\left(-0.3\right)^2=\frac{4169}{11025}\)

b, \(=\left(\frac{1}{7}xy+7yz+\frac{1}{7}xy-7yz\right)\left(\frac{1}{7}xy+7yz-\frac{1}{7}xy+7yz\right)\)

\(=\frac{2}{7}xy.14yz=4xy^2z=4.2.\left(0,25\right)^2.\left(-4\right)=-2\)

17 tháng 8 2020

a) \(5x^2-2x\left(3x+\frac{3}{2}\right)=-x^2-3x=-x\left(x+3\right)=-3\left(3+3\right)=-18\)

b) \(3x\left(x-4y\right)-\frac{12}{5}y\left(y-5x\right)=3x^2-\frac{12}{5}y^2=3\left(x^2-\frac{4}{5}y^2\right)\)

\(=3\left(4^2-\frac{4}{5}.5^2\right)=3.\left(-4\right)=-12\)

c) \(\left(x-2\right)^2-\left(x+7\right)\left(x-7\right)=x^2-4x+4-x^2+49=-4x+53=-4.3+53=41\)

d) \(x^2+12x+36=\left(x+6\right)^2=\left(64+6\right)^2=70^2=4900\)

e) \(\left(x-3\right)^2-\left(x-4\right)\left(x+4\right)=x^2-6x+9-x^2+16=-6x+25=-6\left(-1\right)+25\)

= 31

f) \(\left(3x+2y\right)^2-4y\left(3x+y\right)=9x^2+12xy+4y^2-12xy-4y^2=9x^2=9\left(-\frac{1}{3}\right)^2=1\)

17 tháng 8 2020

a, \(5x^2-2x\left(3x+\frac{3}{2}\right)=-x^2-3x\)

Thay x = 3 vào biểu thức trên ta cs : \(-3^2-3.3=-9-9=-18\)

b, \(3x\left(x-4y\right)-\frac{12}{5}y\left(y-5x\right)=3x^2-\frac{12}{5}y^2\)

Thay x = 4 ; y = 5 vào biểu thức trên ta có : \(3.4^2-\frac{12}{5}.5^2=-12\)

30 tháng 11 2016

các bạn làm giùm mih đi câu nào cũng được