K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2020

A = 3 + 32 + 33 + ... + 3100

⇔ 3A = 3( 3 + 32 + 33 + ... + 3100 )

⇔ 3A = 32 + 33 + ... + 3101

⇔ 2A = 3A - A

          = 32 + 33 + ... + 3101 - ( 3 + 32 + 33 + ... + 3100 )

          = 32 + 33 + ... + 3101 - 3 - 32 - 33 - ... - 3100

          = 3101 - 3

2A + 3 = 3x+100

⇔ 3101 - 3 + 3 = 3x+100

⇔ 3101 = 3x+100

⇔ 101 = x + 100

⇔ x = 1

Vậy x = 1

14 tháng 9 2020

                                                        Bài giải

\(A=3+3^2+3^3+...+3^{100}\)

\(3A=3^2+3^3+3^4+...+3^{101}\)

\(3A-A=2A=3^{101}-3\)

Ta có : \(2A+3=3^{x+100}\)

\(3^{101}-3+3=3^{x+100}\)

\(3^{101}=3^{x+100}\)

\(\Rightarrow\text{ }x+100=101\)

\(\Rightarrow\text{ }x=1\)

28 tháng 6 2018

B = 31 + 32 + 33 + ... + 328 + 329 + 330

B = (  31 + 32 + 33 ) + ... + ( 328 + 329 + 330 )

B = 31 . ( 1 + 3 + 32 ) + ... + 328 . ( 1 + 3 + 32 )

B = 31 . 13 + ... + 328 . 13

B = 13 . ( 3 + ... + 328 ) \(⋮\)13

Vậy B \(⋮\)13 ( dpcm )

28 tháng 6 2018

\(B=3^1+3^2+3^3+3^4+3^5+............+3^{30}\)

\(\Rightarrow B=\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+............+\left(3^{28}+3^{29}+3^{30}\right)\)

\(\Rightarrow B=3^1.\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+.........+3^{28}.\left(1+3+3^2\right)\)

\(\Rightarrow B=3^1.13+3^4.13+.........+3^{28}.13\)

\(\Rightarrow B=13\left(3^1+3^4+.........+3^{28}\right)\)

Mà 13 \(⋮\)13 \(\Rightarrow13\left(3^1+3^4+...........+3^{28}\right)⋮13\)

Vậy B chia hết cho 13

16 tháng 10 2021

\(3+3^2+3^3+...+3^{60}\\ =\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\\ =\left(1+3\right)\left(3+3^3+...+3^{59}\right)\\ =4\left(3+3^3+...+3^{59}\right)⋮4\\ 3+3^2+3^3+...+3^{60}\\ =\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\\ =3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\\ =\left(1+3+3^2\right)\left(3+3^4+...+3^{58}\right)\\ =13\left(3+3^4+...+3^{58}\right)⋮13\)

16 tháng 10 2021

thanks

 

16 tháng 10 2021

B=2+22+23+...+2100

2B=22+23+24+...+2101

2B-B=(22+23+24+...+2101)-(2+22+23+...+2100)

B=2101-2

Theo như đề bài thì B+2=2X mà B=2101-2

Vậy B+2=2101-2+2=2101=2x

Suy ra x=101 

Đáp số 101

 

16 tháng 7 2016

65536

387420489

33554432

536870912

390625

6561

16 tháng 7 2016

24 . 26 . 2 = 211

35 . 27 . 81 . 36 = 35 . 33 . 34 . 36 = 318

42 . 415 . 64 = 42 . 415 . 43 = 420

29 . 16 . 48 = 29 . 24 . (22)8 = 2. 24 . 216 = 229

512 : 54 = 58

274 : 34 = (27:3)4 = 94

6 tháng 1 2021

Trời trời, mình làm cho bạn câu khi nãy bạn phải biết vận dụng cho mấy bài sau chứ, câu này giống i lột câu khi nãy luôn ấy, nhưng thôi, khá rảnh nên:vv

+Ta có: \(B=3+3^2+3^3+3^4+...+3^{2010}\)

-> \(B=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

-> \(B=3.4+3^3.4+...+3^{2009}.4\)

-> \(B=4\left(3+3^3+...+3^{2009}\right)⋮4\)

-> Đpcm 

+ Ta có: \(B=3+3^2+3^3+3^4+....+3^{2010}\)

-> \(B=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)

-> \(B=3.13+3^4.13+...+.3^{2008}.13\)

-> \(B=13\left(3+3^4+...+3^{2008}\right)⋮13\)

-> Đpcm

Ta có: \(B=3^1+3^2+3^3+3^4+...+3^{2010}\)

\(=3^1\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+...+3^{2009}\cdot\left(1+3\right)\)

\(=\left(1+3\right)\cdot\left(3^1+3^3+...+3^{2009}\right)\)

\(=4\cdot\left(3+3^3+...+3^{2009}\right)⋮4\)(đpcm)

Ta có: \(B=3^1+3^2+3^3+3^4+...+3^{2010}\)

\(=3\left(1+3+3^2\right)+3^4\cdot\left(1+3+3^2\right)+...+3^{2008}\cdot\left(1+3+3^2\right)\)

\(=\left(1+3+3^2\right)\cdot\left(3+3^4+...+3^{2008}\right)\)

\(=13\cdot\left(3+3^4+...+3^{2008}\right)⋮13\)(đpcm)

12 tháng 4 2022

?

12 tháng 4 2022

sao v ạ? em mới sửa r đó ạ