Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(G=\frac{1}{3^0}+\frac{1}{3^1}+...+\frac{1}{3^{2005}}\)\(\Rightarrow3G=3+\frac{1}{3^0}+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\)
\(\Rightarrow3G-G=2G=3-\frac{1}{3^{2005}}\)\(\Rightarrow G=\frac{3-\frac{1}{3^{2005}}}{2}\)
\(Y=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\)\(\Rightarrow2Y=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)
\(\Rightarrow2Y-Y=2-\frac{1}{2^{2012}}\) \(\Rightarrow Y=2-\frac{1}{2^{2012}}\)
a) Các số có dạng : \(\frac{1}{a\left(a+1\right)}=\frac{\left(a+1\right)-a}{a\left(a+1\right)}=\frac{1}{a}-\)\(\frac{1}{a+1}\)
Thế vào bởi các số sẽ có kết quả
b) Các số có dạng : \(\frac{1}{a\left(a+2\right)}=\frac{1}{2}.\frac{2}{a\left(a+2\right)}=\frac{1}{2}.\frac{\left(a+2\right)-a}{a\left(a+2\right)}\)\(=\frac{1}{2}.\left(\frac{1}{a}-\frac{1}{a+2}\right)\)
Làm tương tự trên
c) Lấy nhân tử chung là 5 rồi làm như câu a)
S = 1 + 31 + 32 + 33 + ... + 330
3S = 3 + 32 + 33 + 34 + ... + 331
3S - S = (3 + 32 + 33 + 34 + ... + 331) - (1 + 31 + 32 + 33 + ... + 330)
2S = 331 - 1
\(S=\frac{3^{31}-1}{2}\)
e) từ 5 đến 99 có (99-5):2 +1=48 số
99-97+95-93+91-89+..............+7-5+3
=(99-97)+(95-93)+(91-89)+..............+(7-5)+3
=2+2+2+.............+2+3
=2x48+3
=96+3
=99
các câu còn lại tí nữa mình giải sau
Số lượng số hạng của dãy số trừ 1 đầu:
\(\left(99-1\right):1+1=99\) (số hạng)
Tổng của dãy số là:
\(\left(99+1\right)\cdot99:2+1=4951\)
Số số hạng của dãy 1 + 2 + 3 + ... + 89:
89 - 1 + 1 = 89 số:
Tổng là:
1 + (89 + 1) . 89 : 2 = 1 + 45 . 89 = 4006