Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3(1/2+1/4+1/8+1/16.....1/128)
A=(1/2+1/4+1/8+1/16....1/128)
2A-A=A
2A=(1/2+1/4+1/8....1/128)*2
=1+1/2+1/4....1/64
2A-A=1+1/2+1/4+1/8....1/64-(1/2+1/4+1/8......1/128)
A=1-1/128=127/128
Đáp số:3*127/128=381/128
a) A= 1/2 + 1/4+ 1/8+ 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512
A = 1 - 1/2 + 1/2- 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64 + 1/64 - 1/128 + 1/128 - 1/256 - 1/256 - 1/512
A = 1 - 1/512
A = 511/512
b) B = 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
3B = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243
3B - B = 1 - 1/729
2B = 728/729
B = 364/729
a) A= 1/2 + 1/4+ 1/8+ 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512
A = 1 - 1/2 + 1/2- 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64 + 1/64 - 1/128 + 1/128 - 1/256 - 1/256 - 1/512
A = 1 - 1/512
A = 511/512
b) B = 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
3B = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243
3B - B = 1 - 1/729
2B = 728/729
B = 364/729
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(=1-\frac{1}{2}+...+\frac{1}{128}=1-\frac{1}{128}=\frac{127}{128}\)
\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\)
\(\dfrac{4}{2}A=\dfrac{4}{2}\cdot\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\right)\)
\(2A=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}\)
\(2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\right)\)
\(A=\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+..\left(\dfrac{1}{32}-\dfrac{1}{32}\right)+\left(1-\dfrac{1}{64}\right)\)
\(A=1-\dfrac{1}{64}\)
\(A=\dfrac{63}{64}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}+\frac{1}{64}-\frac{1}{128}\)
\(=1-\frac{1}{128}\)
\(=\frac{127}{128}\)
Đặt A = 1 + 2 + 4 + 8 + 16 + … + 4096 + 8192
Ta có: A = 20 + 21 + 22 + 23 + 24 + … + 212 + 213 (1)
Nhân cả hai vế của (1) cho 2, ta được: 2A = 21 + 22 + 23 + 24 + 25 + … + 213 + 214 (2)
Lấy (2) - (1), ta được: 2A - A = 21 + 22 + 23 + 24 + 25 + … + 213 + 214 - (20 + 21 + 22 + 23+ 24 + … + 212 + 213)
A = 21 - 20 + 22 - 21 + 23 - 22 + 24 - 23 + 25 - 24 + … + 213 - 212 + 214 - 213
A = 214 - 20
A = 16384 - 1
A = 16383
= 4/5 + 1/5 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2
= (4/5 + 1/5) + (1/2 + 1/2) + (1/2 + 1/2) + 1/2
= 1 + 1 + 1 + 1/2
= 3 + 1/2
= 6/2 + 1/2 (Hoặc ra luôn là hỗn số 3 và 1/2)
= 7/2
hgfhviuydfuighqjerhyg89auyiotery9g9a7ergnjm,hcvuixdsgf/sjdojiFU9QWEYFHBSJDHJIHSDUFHSDJFHYUEHFDJBVSDTYWERHFUSDHIFUIGFEWHGFDN FGYUISDFGWEHUIS78ftgweufrwe7feywghfwejguisdyfuie
huhewuihtfyoeyfhiewjuioewui
iohyu8gyerhiotys8idogerihgapodf7yguerthgierugkjehgkdfhvjdfghjktrnhgioejgrjtqeuogtioejrgieigjriejgỏepugjerijgoeprjkgiorgkojboerjgkreogpjktbopdfujerkgnmjrkejherihjoipjghoerhjfkbgfdhji
Ê bn 5154515!Bị ngáo à?
\(????????????????????????\)