K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2019

\(A=4x^2-y^2-2y-1\)

  \(=\left(2x\right)^2-\left(y+1\right)^2\)

  \(=\left(2x+y+1\right)\left(2x-y-1\right)\)

  \(=-197\) 

Vậy....

18 tháng 7 2019

Cảm ơn~~

24 tháng 9 2020

x-2y=3 hay x-2y+3

Bài 1 : Cho a + b = 1 Tính M = a 3 + b3 + 3ab(a2+b2) + 6a2b2(a+b)Bài 2 : Cho hai số dương x , y thỏa mãn x3+y3=3xy - 1 Tính giá trị biểu thức A = x2018 + y 2019 Bài 3 : Cho các số x , y thỏa mãn đẳng thức 5x2 + 5y2 + 8xy - 2x +2y +2 = 0 . Tính giá trị của biểu thức : M = ( x + y )2018 +( x-2)2019+(y+1)2020Bài 4 : Cho tam giác ABC có goác A = 90 độ , AB < AC , đường cao AH . Gọi D là điểm đối xứng của A qua H ....
Đọc tiếp

Bài 1 : Cho a + b = 1 

Tính M = a 3 + b3 + 3ab(a2+b2) + 6a2b2(a+b)

Bài 2 : Cho hai số dương x , y thỏa mãn x3+y3=3xy - 1 

Tính giá trị biểu thức A = x2018 + y 2019 

Bài 3 : Cho các số x , y thỏa mãn đẳng thức 5x2 + 5y2 + 8xy - 2x +2y +2 = 0 . Tính giá trị của biểu thức : M = ( x + y )2018 +( x-2)2019+(y+1)2020

Bài 4 : Cho tam giác ABC có goác A = 90 độ , AB < AC , đường cao AH . Gọi D là điểm đối xứng của A qua H . Đường thẳng kẻ qua D song song với AB cắt BC,AC lần ,lượt tại M,N.

a ) Tứ giác ABMD là hình gì ? Vì sao ?

b ) Chứng minh M là trực tâm tam giác ACD .

c )Gọi I là trung điiểm MC . Chứng minh :  góc HNI = 90 độ 

Bài 5 : Cho biểu thức : 

\(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\left(ĐKXĐ:x\ne0,x\ne-5\right)\)

a ) Rút gọn biểu thức trên 

b ) Tìm giá trị của x để giá trị của biểu thức =1

0
24 tháng 9 2020

1) \(x-2y=3\Rightarrow\hept{\begin{cases}x=3+2y\\y=\frac{x-3}{2}\end{cases}}\)

\(\Rightarrow A=2x\left(x+2y-3\right)-y\left(6x-3y-10\right)+x-7+\left(x-3y\right)^2\)

\(=2x^2+4xy-6x-6xy+3y^2+10y+x-7+x^2-6xy+9y^2\)

\(=3x^2+12y^2-8xy-5x+10y-7\)

\(=3.\left(3+2y\right)^2+12y^2-8\left(3+2y\right).y-5\left(3+2y\right)+10y-7\)

\(=3\left(9+12y+4y^2\right)+12y^2-8\left(3y+2y^2\right)-15-10y+10y-7\)

\(=27+36y+12y^2+12y^2-24y-16y^2-15-10y+10y-7\)

\(=8y^2+12y+5\)

24 tháng 9 2020

\(M=\left(x^2-2x+1\right)\left(1+2x\right)-\left(x^2+2x+1\right)\left(1-3x\right)-\left(3-6x\right)\left(x^2+3x+2\right)\)

\(=x^2+2x^3-2x-4x^2+1+2x-x^2+3x^8-2x+6x^2-1+3x-3x^2-9x-6+6x^8\)\(+18x^2+12x=11x^3+17x^2+4x-6\)

12 tháng 10 2019

2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)

b) \(x^2+16x+64=\left(x+8\right)^2\)

c) \(x^3-8y^3=x^3-\left(2y\right)^3\)

\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)

d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)

22 tháng 7 2019

C = y( x^4-y^4)-x^4y+y^5

    =x^4y-y^5-x^4y+y^5

    =0

Vậy...........................................

22 tháng 7 2019

Bài giải ....

C = y . ( x2 - y2 ) ( x2 + y2) - y ( x4 - y4 )

C = y . \([(x^2)^2-\left(x^2\right)^2]\)- y . ( x4 - y4 )

C = y . ( x4 - y4 ) - y . ( x4 - y4 )

C = 0

6 tháng 9 2020

1. ( 2x + y )( 4x2 - 2xy + y2 ) - 8x3 - y3 - 16

= [ ( 2x )3 + y3 ] - 8x3 - y3 - 16

= 8x3 + y3 - 8x3 - y3 - 16

= -16 ( đpcm )

2. ( 3x + 2y )2 + ( 3x + 2y )2 - 18x2 - 8y2 + 3

= 2( 3x + 2y )2 - 18x2 - 8y2 + 3

= 2( 9x2 + 12xy + 4y2 ) - 18x2 - 8y2 + 3

= 18x2 + 24xy + 8y2 - 18x2 - 8y2 + 3

= 24xy + 3 ( có phụ thuộc vào biến )

3. ( -x - 3 )3 + ( x + 9 )( x2 + 27 ) + 19

= -x3 - 9x2 - 27x - 27 + x3 + 9x2 + 27x + 243 + 19

= -27 + 243 + 19 = 235 ( đpcm )

4. ( x - 2 )3 - x( x + 1 )( x - 1 ) + 13( x - 4 )

= x3 - 6x2 + 12x - 8 - x( x2 - 1 ) + 13x - 52

= x3 - 6x2 + 12x - 8 - x3 + x + 13x - 52

= -6x2 + 26x - 60 ( có phụ thuộc vào biến )

6 tháng 9 2020

1. (2x+y).(4x2-2xy+y2)-8x3-y3-16

=(2x)3+y3-8x3-y3-16

=-16

Vậy đa thức trên kh phụ thuộc vào biến x

2. (3x+2y)2+(3x+2y)2-18x2-8y2+3

=(9x2+12xy+4y2)+(9x2+12xy+4y2)-18x2-8y2+3

=9x2+12xy+4y2+9x2+12xy+4y2-18x2-8y2+3

=24xy+3

Vậy đa thức trên phụ thuộc biến x

11 tháng 8 2019

1) A=\(-2\left(x^2-2x+1\right)-\left(y^2-2y+1\right)+8\)

\(=-2\left(x-1\right)^2-\left(y-1\right)^2+8\)

Vì \(\hept{\begin{cases}-2\left(x-1\right)^2\le0;\forall x\\-\left(y-1\right)^2\le0;\forall y\end{cases}}\)

\(\Rightarrow-2\left(x-1\right)^2-\left(y-1\right)^2\le0;\forall x,y\)

\(\Rightarrow-2\left(x-1\right)^2-\left(y-1\right)^2+8\le0+8;\forall x,y\)

Hay \(A\le8;\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}-2\left(x-1\right)^2=0\\-\left(y-1\right)^2=0\end{cases}}\)

                        \(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

Vậy MAX A=8 \(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

Phần kia tương tự

11 tháng 8 2019

1> A = -2x2 - y2 -2xy + 4x + 2y + 5

= -(x2 + y2 + 2xy - 2x - 2y + 1)-(x2 - 2x + 1)+7

= -(x + y - 1)2 - (x-1)2 + 7

Ta thấy: \(-\left(x+y-1\right)^2\le0;-\left(x-1\right)^2\le0\)

Nên A \(\le\)7. Dấu "=" xảy ra <=> x = 1 , y = 0

2> Ghép từng cặp x vs x; y vs y ; z vs z

26 tháng 12 2020

\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

\(=1-ab+3ab\left(1-2ab\right)+6a^2b^2\)

\(=1-3ab+3ab-6a^2b^2+6a^2b^2=1\)

Vậy M=1

26 tháng 12 2020

M = a3 + b3 + 3ab( a2 + b2 ) + 6a2b2( a + b )

= ( a + b )3 - 3ab( a + b ) + 3ab[ ( a + b )2 - 2ab ] + 6a2b2( a + b )

= 13 - 3ab.1 + 3ab( 12 - 2ab ) + 6a2b2.1

= 1 - 3ab + 3ab - 6a2b2 + 6a2b2

= 1