Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt Biểu thức trên là A
\(A=\frac{1}{2.5.9}+\frac{1}{2.9.13}+\frac{1}{2.13.17}+...+\frac{1}{2.397.401}+\frac{1}{2.401.405}\)
\(A=\frac{1}{2}\left(\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+...+\frac{1}{397.401}+\frac{1}{401.405}\right)\)
\(4A=\frac{1}{2}\left(\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{397.401}+\frac{4}{401.405}\right)\)
\(4A=\frac{1}{2}\left(\frac{9-5}{5.9}+\frac{13-9}{9.13}+\frac{17-13}{13.17}+...+\frac{401-397}{397.401}+\frac{405-401}{401.405}\right)\)
\(4A=\frac{1}{2}\left(\frac{1}{5}-\frac{1}{405}\right)=\frac{1}{2}.\frac{80}{405}=\frac{40}{405}\Rightarrow A=\frac{40}{4.405}=\frac{2}{81}\)
\(S1=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\)
\(S1=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{101}=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)
\(S2=\frac{5}{1.3}+\frac{5}{3.5}+....+\frac{5}{99.101}\)
\(S2=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-.....-\frac{1}{101}\right)=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{5}{2}\cdot\frac{100}{101}=\frac{250}{101}\)
a)b) Bạn nhân cả tử và mẫu với 2. Mình làm luôn, ko ghi lại đề bài
a)\(\frac{2}{4.9}+\frac{2}{9.14}+\frac{2}{14.19}+...+\frac{2}{504.509}\)
=\(\frac{2}{5}.\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{504}-\frac{1}{509}\right)\)
=\(\frac{2}{5}.\left(\frac{1}{4}-\frac{1}{509}\right)\)
=\(\frac{2}{5}.\frac{505}{2036}=\frac{101}{1018}\)
b)\(\frac{2}{10.18}+\frac{2}{18.26}+\frac{2}{26.34}+...+\frac{2}{802.810}\)
=\(\frac{1}{4}\left(\frac{1}{10}-\frac{1}{18}+\frac{1}{18}-\frac{1}{26}+\frac{1}{26}-\frac{1}{34}+...+\frac{1}{802}-\frac{1}{810}\right)\)
=\(\frac{1}{4}.\left(\frac{1}{10}-\frac{1}{810}\right)\)
=\(\frac{1}{4}.\frac{8}{81}=\frac{2}{81}\)
c) Mình biết làm, ddoiwtj tí nữa mình làm cho. Giờ đang mỏi tay
Thẳng Nobita kun có chép bài thì đừng t..i..c..k cho nó
A=\(\frac{1}{2.9}+\frac{1}{9.7}+\frac{1}{7.19}+...+\frac{1}{252.509}\)
=\(\frac{1}{2}-\frac{1}{509}\)
=\(\frac{507}{1018}\)
A = \(2\left(\frac{1}{10.18}+\frac{1}{18.26}+\frac{1}{26.34}+....+\frac{1}{802.810}\right)\)
\(=2.\frac{1}{8}\left(\frac{8}{10.18}+\frac{8}{18.26}+\frac{8}{26.34}+....+\frac{8}{802.810}\right)\)
\(=\frac{1}{4}\left(\frac{1}{10}-\frac{1}{18}+\frac{1}{18}-\frac{1}{26}+\frac{1}{26}-\frac{1}{34}+....+\frac{1}{802}-\frac{1}{810}\right)\)
\(=\frac{1}{4}\left(\frac{1}{10}-\frac{1}{810}\right)=\frac{1}{4}\left(\frac{81}{810}-\frac{1}{810}\right)=\frac{1}{4}.\frac{80}{810}=\frac{1}{4}.\frac{8}{81}=\frac{2}{81}\)
Để  \(\frac{2n+1}{3n+2}\)là phân số tối giản thì 2n+1 và 3n+2 phải là 2 số ng.tố cùng nhau.Gọi d là ƯC của 2n+1 và 3n+2 Ta có :
\(\Rightarrow\)3(2n+1)|d và 2(3n+2)|\(\Rightarrow\)2(3n+2)-3(2n+1)|d\(\Rightarrow\)1|d
Ta thấy :1|d ngĩa là d\(\in\)Ư(1).Vậy hai số trên là ng.tố cùng nhau.Từ đó ta kết luận phân số trên là tối giản.
C/2 = 1/10.18 + 1/18.26 + 1/26.34 + ....... + 1/802.810
4C = 8C/2 = 8/10.18 + 8/18.26 + 8/26.34 + ...... + 8/802.810
= 1/10 - 1/18 + 1/18 - 1/26 + 1/26 - 1/34 + ...... + 1/802 - 1/810
= 1/10 - 1/810 = 8/81
=> C = 8/81 : 4 = 2/81
Tk mk nha