Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Đặt A=1.2+2.3+3.4+4.5+.........+99.100
=> 3A=1.2.3+2.3.(4-1)+........+99.100.(101-98)
3A=1.2.3+2.3.4-1.2.3+........+99.100.101-98.99.100
3A=99.100.101
A=33.100.101
A=333300
Bài 2 :
1:20 + 1:44 + 1:77 + 1:119 + 1:170 = \(\frac{1}{20}+\frac{1}{44}+\frac{1}{77}+\frac{1}{119}+\frac{1}{170}=\frac{1}{10}=0,1\)
1)1.2+2.3+3.4+4.5+...+99.100
đặt 3D=1.2+2.3+3.4+...+99.100
=1.2.3+2.8.3+...+3.4.3+4.5.3+...+99.100.3
=1.2.3+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+99.100.(101-98)
=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5
=99.100.101
=999900
D=999900:3=333300
nếu đúng nhớ cảm ơn nhak. mình ko bít làm bài 2
Nó dài lắm bạn à!!!!
Bó tay luôn!!!!
Đúng thì k nha!!!!
\(\dfrac{1}{5}+\dfrac{1}{20}+\dfrac{1}{44}+\dfrac{1}{77}+\dfrac{1}{119}+\dfrac{1}{170}+\dfrac{1}{230}+\dfrac{1}{299}\)
=\(\dfrac{2}{10}+\dfrac{2}{40}+\dfrac{2}{88}+\dfrac{2}{154}+\dfrac{2}{238}+\dfrac{2}{340}+\dfrac{2}{460}+\dfrac{2}{598}\)
=\(\dfrac{1}{3}.2\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+\dfrac{3}{14.17}+\dfrac{3}{17.20}+\dfrac{3}{20.23}+\dfrac{3}{23.26}\right)\)
=\(\dfrac{2}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{20}+\dfrac{1}{20}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{26}\right)\)
=\(\dfrac{2}{3}\left(\dfrac{1}{2}-\dfrac{1}{26}\right)\)
=\(\dfrac{2}{3}.\dfrac{6}{13}\)
=\(\dfrac{4}{13}\)
Chứng minh A > B, biết:
A=2/5.7+5/7.12+7/12.19+9/19.28+11/28.39+1/30.40
B=1/20+1/44+1/77+1/119+1/170
Ta có : +) A= 1/5 -1/7 +1/7 -1/12 +1/12 - 1/19 +1/19 - 1/28 +1/28 - 1/39 +1/30.40 ⇔ A=1/5 -1/39 +1/30.40
+) B= 2.(1/5.8 +1/8.11 +1/11.14 +1/14.17 + 1/17.20 )
⇔B=2. 1/3.(1/5 - 1/8 +1/8 - 1/11 +1/11- 1/14 +1/14 -1/17 +1/17 -1/20 )
⇔B=2/3.( 1/5-1/20 ) Ta luôn có :B luôn <1/5 - 1/20
Mà 1/5 -1/20 <1/5 -1/39 +1/30.40 =A
⇒ A>B (dpcm) Tích mình với nha bn .
Câu C giải rồi
\(B=\dfrac{1}{5}+\dfrac{1}{20}+\dfrac{1}{44}+\dfrac{1}{77}+\dfrac{1}{119}+\dfrac{1}{170}+\dfrac{1}{230}+\dfrac{1}{299}\)
\(=2\left(\dfrac{1}{10}+\dfrac{1}{40}+\dfrac{1}{88}+\dfrac{1}{154}+\dfrac{1}{238}+\dfrac{1}{340}+\dfrac{1}{460}+\dfrac{1}{598}\right)\)
\(=\dfrac{2}{3}\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+\dfrac{3}{14.17}+\dfrac{3}{17.20}+\dfrac{3}{20.23}+\dfrac{3}{23.26}\right)\)
\(=\dfrac{2}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{23}-\dfrac{1}{26}\right)\)
\(=\dfrac{2}{3}\left(\dfrac{1}{2}-\dfrac{1}{26}\right)=\dfrac{4}{13}\)
Sửa đề: 39*40
\(A=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{12}+...+\dfrac{1}{39}-\dfrac{1}{40}=\dfrac{1}{5}-\dfrac{1}{40}=\dfrac{7}{40}\)
\(B=\dfrac{2}{3}\left(\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{17\cdot20}\right)\)
\(=\dfrac{2}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{17}-\dfrac{1}{20}\right)\)
=2/3*3/20=2/20=1/10=4/40<A
\(\frac{1}{5}+\frac{1}{20}+\frac{1}{44}+\frac{1}{77}+\frac{1}{119}+\frac{1}{170}+\frac{1}{230}+\frac{1}{299}\)
\(=\frac{1}{1.5}+\frac{1}{5.4}+\frac{1}{4.11}+\frac{1}{11.7}+...+\frac{1}{23.13}\)
\(=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{4}+...+\frac{1}{23}-\frac{1}{13}\)
\(=1-\frac{1}{13}\)
\(=\frac{12}{13}\)