Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( 2100 + 2101 + 2102 ) : ( 297 + 298 + 299 )
= [ 2100 . ( 1 + 2 + 22 ) ] : [ 297 . ( 1 + 2 + 22 ) ]
= ( 2100 . 7 ) : ( 297 . 7 )
= 2100 : 297
= 23
= 8
2101+2102+2103
=23(298+299+2100)
=>(2101+2102+2103) chia hết cho (298+299+2100)
Ta có : 2^101+2^102+2^103=2^98x2^3+2^99x2^3+2^100x2^3=(2^98+2^99+2^100)x2^3 chia hết cho 2^98+2^99+2^100.
18576: {\(105^0\)+[2.(102+101−100−99+98+97−96−95+.........+6+5−4−3+2+1)−201]}^3
Đặt A=102+101−100−99+98+97−96−95+...............+6+5−4−3+2+1
A=(102+101−100−99)+(98+97−96−95)+........+(6+5−4−3)+2+1
A=4+4+...........+4+3
A=4.25+3
A=103
⇒18576:{1050+[2.(102+101−100−99+98+97−96−95+.........+6+5−4−3+2+1)−201]}^3
=18576:[1+(2.103)−201]^3
=18576:63
=18576:216
=86
B=2100-(1+2+22+....+299)
Gọi 1+2+22+...+299=A
=>2A=2+22+23+...+2100
=>2A-A=A=(2+22+23+...+2100)-(1+2+22+...+299)
=>A=2100-1
Vậy B = 2100-(2100-1)
B=1
Triển khai phép tính trên, ta có:
\(\Leftrightarrow\left(2^{99}\cdot2-2^{99}\right)+\left(2^{97}\cdot2-2^{97}\right)+...+\left(2\cdot2-2\right)\)
\(\Leftrightarrow2^{99}+2^{97}+2^{95}+...+2^3+2\)
\(\Leftrightarrow\left(2^{97}\cdot2^2+2^{97}\right)+\left(2^{93}\cdot2^2+2^{93}\right)+...+\left(2^3\cdot2^2+2^3\right)+2\)
\(\Leftrightarrow5\left(2^{97}+2^{93}+2^{89}+...+2^7+2^3\right)+2\)
\(c,G=1-2-3+4+5-6-7+...+97-98-99+100\)
\(=\left(1-2-3+4\right)+\left(5-6-7+8\right)+...+\left(97-98-99+100\right)\) (có tất cả \(100\div4=25\)cặp)
\(=0+0+...+0=0\)
\(d,H=2^{100}-2^{99}-2^{98}-...-2-1\)
\(\Rightarrow2H=2^{101}-2^{100}-2^{99}-...-2^2-2\)
\(=2^{101}-\left(2^{100}+2^{99}+...+2^2+2\right)\)
Đặt \(A=2^{100}+2^{99}+2^{98}+...+2^2+2\)
Tính được \(A=2^{101}-2\)
\(\Rightarrow H=2^{101}-\left(2^{101}-2\right)=2^{101}-2^{101}+2=2\)
\(e,I=2-5+8-11+...+98-101\)
\(=\left(2-5\right)+\left(8-11\right)+...+\left(98-101\right)\) (có tất cả \(34\div2=17\)cặp)
\(=\left(-3\right)+\left(-3\right)+...+\left(-3\right)\)
\(=\left(-3\right).17=-51\)
Sửa lại phần d
\(d,H=2^{100}-2^{99}-2^{98}-...-2-1\)
\(=2^{100}-\left(2^{99}+2^{98}+2^{97}+...+2+1\right)\)
Đặt \(A=2^{99}+2^{98}+2^{97}+...+2+1\)
Tính \(A=2^{100}-2\)
\(\Rightarrow H=2^{100}-\left(2^{100}-2\right)=2^{100}-2^{100}+2=2\)
Ta sẽ có ( 2100 + 2101 + 2102 ) : ( 297 + 298 + 299 )
= ( 2100 : 297 ) + ( 2101 : 298 ) + ( 2102 : 299 )
= 23 + 23 + 23
= 23 . 3
= 8 . 3
= 24
=2100(1+2+22) : 297(1+2+22)
=2100:297=23=8