Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+\frac{2}{15}=\frac{1}{3}\)
\(x=\frac{1}{3}-\frac{2}{15}\)
\(x=\frac{1}{5}\)
h, \(h,\frac{1}{3}-\frac{2}{3}:x=\frac{1}{4}\)
\(\frac{2}{3}:x\)= \(\frac{1}{3}-\frac{1}{4}\)
\(\frac{2}{3}:x=\frac{1}{12}\)
\(x=\frac{2}{3}:\frac{1}{12}\)
\(x=8\)
\(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7.9}+\cdot\cdot\cdot\cdot\cdot+\frac{1}{43\cdot45}\)
=\(\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\cdot\cdot\cdot\cdot\cdot+\frac{1}{43}-\frac{1}{45}\right)\)
=\(\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{45}\right)\)
=\(\frac{1}{2}\cdot\frac{14}{45}\)
=\(\frac{7}{45}\)
Cảm ơn bạn nhiều nhiều nhiều nhiều nhiều nhiều nhiều nhiều nhiều nhiều nhiều nhiều nhiều nha
Bước 1: Tính số số hạng có trong dãy: (Số hạng lớn nhất của dãy - số hạng bé nhất của dãy) : khoảng cách giữa hai số hạng liên tiếp trong dãy + 1
Bước 2: Tính tổng của dãy: (Số hạng lớn nhất của dãy + số hạng bé nhất của dãy) x số số hạng có trong dãy : 2
a) 1+2+3+.....+10000
số số hạng:( 10000-1)+1= 10000
tổng các số hạng đó là: ( 10000+1)*10000:2=50005000
b) 1+3+5+....+1003
số số hạng:( 1003-1):2+1= 502
tổng các số hạng đó là: ( 1003+1)*502:2=252004
1.S1=1 - 2 + 3 - 4 + ... + 1997 - 1998 + 1999
= (1 - 2) + ...+(1997 - 1998) + 1999
= -1 + -1 + ...+-1 + 1999
SH:1998 : 2
= 999 . -1
= -999
TDS:-999 + 1999
= 1000
b.S2=1 - 4 + 7 - 10 + ...- 2998+3001
= (1 - 4) + (7 - 10) + ...+ (2995 - 2998) + 3001
= -3 + -3 + ...+-3 + 3001
= (2998 - 1) : 3 + 1
= 1000 . -3
= -3000 + 3001
= 1
câu b mình làm lộn :
S2=1000 : 2
= 500 . -3
=-1500 + 3001
= 1501
KẾT QUẢ RA 1501 NHA
Đặt \(A=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{90}\)
\(=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\right)+\left(\frac{1}{46}+\frac{1}{47}+...+\frac{1}{90}\right)\)
Đặt \(B=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\)
Ta có: \(\frac{1}{31}>\frac{1}{45}\)
\(\frac{1}{32}>\frac{1}{45}\)
....................
\(\frac{1}{45}=\frac{1}{45}\)
\(\Rightarrow B>\frac{1}{45}.15\)
\(\Rightarrow B>\frac{1}{3}\)
Đặt \(C=\frac{1}{46}+\frac{1}{47}+...+\frac{1}{90}\)
Ta có: \(\frac{1}{46}>\frac{1}{90}\)
\(\frac{1}{47}>\frac{1}{90}\)
.....................
\(\frac{1}{90}=\frac{1}{90}\)
\(\Rightarrow C>\frac{1}{90}.45\)
\(\Rightarrow C>\frac{1}{2}\)
\(\Rightarrow B+C>\frac{1}{3}+\frac{1}{2}\)
Hay \(A>\frac{5}{6}\left(1\right)\)
Lại có: \(A=\left(\frac{1}{31}+...+\frac{1}{59}\right)+\left(\frac{1}{60}+...+\frac{1}{90}\right)\)
Đặt \(D=\frac{1}{31}+...+\frac{1}{59}\)
Ta có: \(\frac{1}{31}< \frac{1}{30}\)
. ...................
\(\frac{1}{59}< \frac{1}{30}\)
\(\Rightarrow D< \frac{1}{30}.60\)
\(\Rightarrow D< \frac{1}{2}\)
Đăt \(E=\frac{1}{60}+...+\frac{1}{90}\)
Ta có: \(\frac{1}{60}=\frac{1}{60}\)
.................
\(\frac{1}{90}< \frac{1}{60}\)
\(\Rightarrow E< \frac{1}{60}.31\)
\(\Rightarrow E< \frac{31}{60}< 1\)
\(\Rightarrow E< 1\)
\(\Rightarrow E+D< 1+\frac{1}{2}\)
Hay \(A< \frac{3}{2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{5}{6}< A< \frac{3}{2}\)
mik chỉ giúp câu 2 đc thôi cong câu 1 thì mik có bài tương tự
1.
tìm số nguyên a để 2n+3 chia hết cho n-2
bài giải
ta có 2n=3 chia hết cho n-2
suy ra 2(n-2) + 7 chia hết cho n-2
suy ra n-2 thuộc Ư(7)={1:7}
ta có bảng giá trị
n-2 | 1 | 7 |
n | 3 | 9 |
đối chiếu | thỏa mãn | thỏa mãn |
vậy suy ra n=3 hoặc n =9
2. giải
từ 1 đến 9 có số chữ số là
(9-1):1+1x1= 9(c/s) [nhân 1 vì mỗi số có 1 c/s]
từ 10 dến 99 có scs ( số chữ số) là
(99-10):1+1x2=180(scs)
từ 100 đến 350 có scs là
(350-100):1+1x3=253(scs)
cần sủa dụng scs để đánh số các trang sách là
9+180+253=442 (scs)
vậy cần 442 scs để dánh dấu các trang sách